
Tutorial

Writing Scripts
with SML

in

TNTmips®

TNTedit™
TNTview®

S
M
L

S
C
R
I
P
T
S

page 2

Spatial Manipulation Language

Before Getting Started
This booklet introduces the fundamentals of creating scripts in the Spatial Ma-
nipulation Language (SML) in the TNT products. The exercises in this booklet
introduce you to basic SML concepts and scripting conventions and provide
many examples of powerful scripts for custom manipulations of the spatial data
objects in your TNT Project Files.

Prerequisite Skills This booklet assumes that you have completed the exercises
in the Displaying Geospatial Data and Navigating tutorial booklets. Please con-
sult those booklets and the TNTmips Reference Manual for any review of essen-
tial skills and basic techniques you need. This booklet also assumes that you
have at least a fundamental knowledge of one or more programming languages
such as C, BASIC, or Pascal. You can begin to use SML even if you have no
programming background, but SML is a powerful language and yields the most
benefit in the hands of a good programmer.

Sample Data The exercises in this booklet use sample data distributed with the
TNT products in the DATA and SCRIPTS directories. If you do not have access to a
TNT products CD, you can download the data from the MicroImages web site.
This booklet uses scripts in the SML subdirectory of DATA, and in the MACRSCR and
TOOLSCR subdirectories in the SCRIPTS directory. You will also need files in the
CB_DATA, SF_DATA, SURFMODL, and EDITRAST subdirectories of DATA. Make a read-
write copy of the sample data on your hard drive so changes can be saved when
you use these objects.

More Documentation This booklet is intended only as an introduction to the
Spatial Manipulation Language. Consult the TNT reference manual, and espe-
cially the online SML Reference for more information.

TNTmips and TNTlite® TNTmips comes in two versions: the professional ver-
sion and the free TNTlite version. This booklet refers to both versions as
“TNTmips.” If you did not purchase the professional version (which requires a
software license key), TNTmips operates in TNTlite mode, which limits the size of
your project materials and does not allow export. All exercises in this booklet can
be completed in TNTlite using the sample geodata provided.

Randall B. Smith, Ph.D. and Keith Ghormley, 15 October 2003
©MicroImages, Inc., 1997

It may be difficult to identify the important points in some illustrations without a
color copy of this booklet. You can print or read this booklet in color from
MicroImages’ web site. The web site is also your source for the newest
tutorial booklets on other topics. You can download an installation guide,
sample data, and the latest version of TNTlite:

http://www.microimages.com

page 3

Spatial Manipulation Language

SML in the TNT Products

The exercises on pp. 4-18
introduce basic SML
concepts and scripting
conventions. Pages 19-27
illustrate specific program
techniques for different types
of geodata objects. The
remainder of the book
introduces advanced SML
development techniques
and script types, such as
movie scripts, APPLIDATs,
Macro Scripts, and Tool
Scripts.

STEPS
select Process / SML /
Edit Script... from the
TNTmips main menu

SML in TNTmips

The Spatial Manipulation Language (SML) is the
general-purpose scripting language used through-
out the TNT products. If you have written a selec-
tion query, you have already used basic elements of
SML. But you can also use SML to design custom
processes and add unique capabilities to the TNT
products. SML has evolved as the capabilities of
the TNT products have grown. From its origins as a
scripting language for custom processing of raster
images, SML can now process any type of spatial
object and associated database information. You
can use SML scripts to operate on the geospatial
data objects in Project Files, on objects displayed in
a spatial view, or even to create a virtual display
layer in a view.

You can create and use custom SML scripts in
TNTmips, TNTedit, or TNTview. Scripts prepared
for use in these products can also be distributed
and used in TNTatlas and TNTatlas for Windows.
SML scripts are platform-independent; they run with-
out modification on any computer that runs
TNTmips.

SML is an interpreted scripting language. This
means that your computer evaluates and executes
script statements one at a time. Interpreted languages
are slower than compiled languages (like C or Pas-
cal) in which the program code is pre-evaluated to
create a fast, machine-read-
able version. On the other
hand, SML has a simpler
structure and syntax than compiled lan-
guages, making the task of writing useful
scripts much easier. And SML
provides access to many of
the compiled functions and
processes found in
TNTmips, which can
speed script execution
for complex operations.

SML in TNTedit

SML in TNTview

Refer to the tutorial booklets
Building and Using
Queries, Using
CartoScripts, and Using
Geospatial Formulas for
information about these
particular script types.

page 4

Spatial Manipulation Language

Be Creative with SML
SML is fully integrated into TNTmips and the other TNT products. You can
create and use several types of SML scripts that provide different levels of
interactivity with your geospatial data and other TNT processes. We will examine
examples of all of the following script types later in this booklet:

SML Process Script: Use the SML process to create custom scripts to uniquely
process your geospatial data. You can use an SML process script to apply an
operation not found in the standard TNT processes or to automate a sequence of
steps involving standard processes or even external programs. SML process
scripts can access and create data in TNT Project Files or in external file formats.
They can also create dialog windows to allow interactive setting of program
options and even views of the input or output data.

Macro Script: Use a macro script to implement custom commands that operate on
the geospatial data in a View window. A macro script can change the view of the
data, operate on data in the View, or start an external program and provide it with
data from and about the layers in the View. You can install a macro script so that
it is available in any TNT View window or restrict its use to a particular saved
group or layout. You can access a macro script from the View window using an
icon button and from the Macros menu. Program options can be provided on a
dropdown menu activated from the script's icon button and Macros menu entry.

Tool Script: Use a tool script to provide a unique interactive graphic tool to select
data in a view window and apply custom processing. A tool script can provide a
point, line, or polygon tool to designate the portion of the data to be processed.
It can also create a dialog window to provide controls for the tool, the process, or
to show the results of the processing. The tool script template provides skeletal
function definitions that you can fill in to define the exact operations you need.
You can activate a tool script from the View window using an icon button or from
the Tools menu.

SML Layer Script: Use an SML Layer script to create a separate layer in a spatial
display view with the Add SML display option. You can use such a script to
render a custom cartographic element such as a magnetic declination symbol.

APPLIDAT: You can use SML to create turnkey geospatial applications for users
of TNTview or TNTmips. An APPLIDAT (APPLIcation plus DATa) bundles an
SML script (or scripts) with the geospatial data to be processed. Data and script
are loaded together automatically when each script is run, so no file navigation is
required. Launch each component script from an icon button on the APPLIDAT's
toolbar, which can also include a button for instructions. An instruction set is
easy to create because you can use any editor that supports the HTML format.

page 5

Spatial Manipulation Language

Run VIEWSHED.SML

VIEWSHED.SML produces a binary raster (1’s
shown here in yellow) that indicates the
areas visible on an elevation surface
(shown here in relief shading) from a
stream of points along input vector line
elements (shown here in cyan). Thus if
the line elements represent roads, then
the yellow areas define the vistas
available to travelers on that road.

The VIEWSHED.SML script is an example of an SML
process script. The script and its sample data in
VIEWSHED.RVC are contained on the TNT products
CD-ROM and are also available on the MicroImages
web site. The script creates an output binary raster
object that shows which parts of its input elevation
surface are visible from the stream of points along
the input line element. Many applications that deal
with line-of-sight surface characteristics can use the
techniques illustrated in this script.

Open the VIEWSHED.SML script in the Spatial Manipu-
lation Language window (SML editor) by following
the steps listed. Before you run the script, scroll
through it and survey its contents. Unless you are
unfamiliar with a programming language such as C
or BASIC, you should recognize statement forms
and programming structures.

Note that the hardest work of the script is done with
calls to various SML functions, such as
RasterToBinaryViewshed(). MicroImages is
constantly adding new functions and classes to
SML. Being aware of what functions and
classes are available and understanding
what they do is essential to making the
most of SML. In addition to using the
built-in SML functions, you can write
your own interpreted SML functions and
procedures, import classes written in Vi-
sual Basic or C, or invoke external pro-
grams from within SML scripts.

STEPS
in the Spatial Manipula-
tion Language window
choose File / Open /
*.SML File and select
VIEWSHED.SML from the SML

directory
scroll through the script
for a first look at SML
click [Run...] at the
bottom of the window
when prompted for the
input raster "RIN", select
DEM from the VIEWSHED

Project File in the SML

directory
for the input vector "V",
select vpath from the
VIEWSHED Project File
select a new Project File
and object for the output
raster "ROUT"
use the TNTmips Display
process to view three
layers: VIEWSHED / DEM,
your new output raster,
and VIEWSHED / VPATH

page 6

Spatial Manipulation Language

Fundamentals of SML Syntax

The Spatial Manipulation
Language window
(hereafter referred to as
the "SML window") is a
simple text editor that
provides access to function
lists and syntax checking.

An SML script can be anything from a single state-
ment to a long structured program with nested logical
branching constructs. To illustrate some of the ba-
sic elements of SML syntax, type in the sample script
illustrated below. The script consists of four lines,
with each line containing one program statement.
The first statement declares a string variable named
stringvar$. The second statement calls a predefined
function that erases the contents of the Console
Window. (This function requires no parameters,
therefore the parentheses following the function
name are empty.) The third statement assigns the
string "Hello" to the previously-declared variable
stringvar$. The final statement calls a predefined

print function to print the value of
stringvar$ to the Console Window.

Spaces and tabs in your script are ig-
nored when the script is interpreted by
SML. Feel free to use spaces and in-
dents to improve the clarity and
readability of your scripts. For example,
this script leaves spaces next to the pa-
rentheses in the print statement.

You will find the basic SML syntax
rules, which are outlined on the follow-
ing pages, to be fairly open and flexible.
For example, most variables are created
when first invoked and need not be de-
clared before use, and use of the

semicolon (;) to terminate statements is optional. Vio-
lations of the basic SML syntax rules will prevent
your script from running (they are reported as er-
rors), but you can screen such errors first by using
the syntax checker. You should use the syntax
checker frequently as you develop your script.
Check each small portion as you write it. It is easier
to find and fix errors as you go along rather than
waiting to fix all of the errors in a long complex script.

SML supports the use of
various types of variables,
classes, functions, and
keywords, and provides
standard operators for use
in assignment statements
and in mathematical and
logical expressions.

The Console Window
shows the results of print()
and other text input / output
operations.

STEPS
clear the SML window
by selecting New from
the File menu
type in the script shown
in the illustration below
click [Run] to execute
the script

page 7

Spatial Manipulation Language

Checking Syntax
The Check option on the Syntax menu checks your
script for syntax problems. Violations of the basic
SML syntax rules, such as missing function param-
eters, misspellings, and unclosed parentheses and
loops, are reported as errors. The syntax checker
cannot detect logical errors such as infinite loops or
incorrect input values.

If the syntax checker finds problems in your script,
the message line at the bottom of the SML window
displays an error message and places the cur-
sor at the end of the last part of the script that
the checker could correctly interpret. A Mes-
sage window also opens and reports the nature
of the error (if possible) and the line
number. Often the error immediately
precedes the cursor location, but if
the error involves nested processing
loops, you may need to search some
distance around the cursor to find the problem.

Although the basic syntax rules are adequate for
simple scripts, SML also includes an optional stricter
set of syntax rules to help you ensure correct inter-
pretation of complex, highly-structured scripts:

1. All variables must be declared before they are
used in a statement.

2. Assigned variable values must match the declared
variable type.

3. All statements must end in a semicolon.

Strict syntax rules are checked only when you check
syntax (not when you run the script), and violations
are reported in a Script Warnings window only
when there are no basic syntax errors. The
sample scripts used in this booklet follow SML's
strict syntax rules, and we encourage you to
follow them in
your own
scripts.

STEPS
edit the previous script
to remove the closing
parenthesis ") " at the
end of the print
statement
select Syntax / Check
from the SML window
click [OK] on the
resulting Message
window

restore the closing
parenthesis to the print
statement
delete the first statement
in the script (the variable
declaration) and the
semicolon from the end
of the last statement
select Syntax / Check
from the SML window
click [Close] on the
resulting Script
Warnings window

page 8

Spatial Manipulation Language

Variables
Variables can be used for string, numeric, logi-
cal, array, class, and object (raster, vector, region,
CAD, and TIN) entities. Variables are created
when the script first mentions them. With the
exception of arrays and classes, variables do not
have to be declared ahead of time in basic SML
syntax. Variables follow these conventions:

String: initial character is lowercase; must end
in ‘$’ character if not declared. Values in assign-
ment statements must be enclosed in double or
single quotes (single quotes allow multi-line

strings).

Numeric: initial character is lowercase; cannot end
in ‘$’. Values can be integer or decimal.

Object: initial character is uppercase
example: GetInputRaster(Rast)

Logical: implemented as numerics where 0 = false,
and all non-zero values = true. You can use either
the logical or numeric values in assignment state-
ments. Thus

done = 0;
if (condition) done = true;
if (done) <statement>;

Array and Class: You must declare an array or a
class before using it. Enclose an array index in
square brackets:

array numeric numlist[10];
numlist[1] = 256;

class COLOR red;

You can use the Insert Symbol window (Insert / Sym-
bol) to insert variables declared or used previously
in the script. Use the Type option menu to choose a
variable type (or Constant) and view the associated
list. Your variable names are added to these lists
when you use the Check Syntax operation or run
the script. Inserting variable names rather than typ-
ing them can cut down on typing errors.

STEPS
select File / New to clear
the SML window
type the first three lines
of the script shown
above and press
<Enter> to start a fourth
script line
select Syntax / Check
select Insert / Symbol
and choose Numeric
from the Type menu on
the Insert Symbol
window
select len from the
Numeric variable list and
press [Insert]
type in the remainder of
the fourth statement
complete the rest of the
script and click [Run]

page 9

Spatial Manipulation Language

Expressions and Statements
Expressions are constructs that reduce to some
value. Thus pi^2, 5.10, and R[i,j]/100 are all expres-
sions. Expressions can be used on the right side of
assignment statements and as arguments in func-
tion calls.

Statements can be simple or complex. A simple state-
ment can consist of an assignment, such as
area = pi * r^2;

Multiple short statements can be place on a single
line if separated by semicolons:
len = 2; width = 5;

Conditional statements have the form
if (<condition>) then <statement>

else <statement>;

Note that the <condition> expression must be en-
closed in parentheses. The else clause is optional,
as is the “then”:
if (<condition>) <statement>;

A complex statement involves multiple actions on
separate script lines and is bracketed by the key-
words “begin” and “end” in the form
if (condition) begin

function(r);
area = pi * r^2;

end

SML also lets you use braces (“curly
brackets”) instead of spelling out “begin”
and “end”:
if (condition) {

function(r);
area = pi * r^2;

}

The comment character (“#”) tells SML to
ignore the rest of the line. If a comment
character is the first character on a line,
SML ignores the whole line. Use com-
ments liberally to document the script logic for your-
self and others.

Use Insert / Operator
to insert standard
operators for math,
comparison, assign-
ment, and logical
operations. SML
operators are similar
to those available in
C or BASIC.

STEPS
select File / Open / *.SML
File and select SML /
EXPRESS.SML

run the script
decrease the value for
the width variable and
run the script again

page 10

Spatial Manipulation Language

Built-In Functions
The real power of SML lies in its rich collection of
built-in functions and classes that let you create,
read, process, and write geospatial objects and
subobjects in your TNT Project Files. Standard math
functions are included along with specialized func-
tions for display, interface, and data manipulation.
MicroImages is constantly enhancing and expand-
ing the SML functions to give you more ways to
work with your geospatial data.

Select Insert / Function to open the Insert Function
window, which lets you select functions and see their
usage format specifications. Click the Function
Group button to examine the available functions for
each category. As you scroll through the list of func-
tions, the definition in the lower pane changes to
show the usage of the current function. Click the
Insert button to copy the function into the SML script
window.

The Insert Function window
offers a scrolling list of
functions in the top pane,
and a function definition in
the bottom pane. If you click
[Insert], SML inserts the
highlighted function at the
cursor position in the SML
window.

The Function Group
button opens a
scrolling list of
function categories.

STEPS
clear the SML window
with File / New
select Insert / Function
click the Function Group
button and browse the
function library for each
category

page 11

Spatial Manipulation Language

Online Function Help
The supporting documentation for SML functions
is incorporated into the process. First, the bottom
pane of the Insert Function window gives a simple
definition, showing each argument and its data type
(text in blue). You can click the Insert button to
copy a complete instance of the function into the
SML window.

For more information, click the Details button in the
Insert Function window. SML opens the
Details On: window that gives complete
details, plus (for many functions) a work-
ing section of code that shows how the
function works in a sequence of state-
ments. You can click the Insert Sample
button to copy the entire example into the
SML window.

Since SML functions are
enhanced from time to time,
the Insert Function window
shows when the current
function was most recently
changed. Watch for modi-
fications that provide op-
tional new capabilities to
functions you have used.

Click the Details
button to see a full
description of the
function's
arguments with an
example of its use.

The Create date tells
when the function was
introduced to SML.
The Modify date tells
when the function was
last updated. Some-
times optional
arguments are added
to a function to expand
its capabilities.

Click Insert Sample to
copy the entire section
of sample code into the
SML window close the Details and Insert Function windows

when you have completed this exercise

STEPS
select All in the Function
Group text box
scroll to the
GPSPortRead() function
click the Details button
click [Insert Sample]
examine the newly-
inserted script lines in
the SML script window

page 12

Spatial Manipulation Language

User-Defined Functions and Procedures

Unless declared otherwise, all script variables
are global. This means that your functions
and procedures can use and modify variables
defined elsewhere in the script. (Any global
array or class variables used in your functions
and procedures must be declared before or in
the function definitions). In a large or complex

script, this global scope of variables may cause un-
anticipated consequences. To limit the scope of a
variable to a particular function or procedure, you
must declare the variable as a local variable within

the function definition:

func funcname ([parmlist])
 { statement; statement; ...
 return expr }
proc procname ([parmlist])
 { statement; statement; ... }

SML allows you to define your own functions and
procedures that you can use to encapsulate sequences
of program steps that must be repeated in several
places in the script. User-defined functions must
return a value, whereas procedures do not. Of course

you must declare a function or a procedure
before you invoke it, using the form:

where x is a variable name. The function pa-
rameters are exceptions to this rule; their scope
is automatically limited to the function. Local
variables can have the same names as global
variables elsewhere in the script, though this
is not recommended practice. In the examples
shown at left, variable x retains the default
value 0 in the main script because the function
parameter x is automatically local. The assign-
ment of value 100 to d in the function
supercedes the value assigned before the func-

tion is called in the main script unless d is also defined
as a local variable in the function.

func funcname ([parmlist]) {
local numeric x; ...

STEPS
select File / Open /
*.SML File and open
LARGER.SML from the SML

directory
run the script

select File / Open /
*.SML File and open
LARGER2.SML from the SML

directory
run the script

page 13

Spatial Manipulation Language

Loops and Branches
Implied Loops. When SML sees a raster object vari-
able on the left side of an assignment statement, it
executes an implied loop, evaluating the right side
of the statement and assigning the result to each cell
in the left-side raster object:

R = R * scale # multiplies each cell in R

For each statements for raster and vector objects
have the forms:
for each Rastvar statement
for each Rastvar[lin,col] statement
for each Rastvar in Region statement
for each vector_element[n] in V statement

In the raster notation, lin and col indicate the line
number and column number of the "current posi-
tion" in the raster for access within the processing
loop. In the vector notation, vector_element can be
"point", "line", "poly", or "node". The [n] is op-
tional and can be omitted. If given, the variable n is
used as the loop counter.

For statements have two forms:
for var=expr to expr statement
for var=expr to expr step expr statement

Loops using "for" statements allow a script
to operate on portions of a set of values (ras-
ter cells, array values, element numbers)
specified by ranges, or to "step" through a
set of values.
for i = 1 to NumLins(Rast) {

for j = 1 to NumCols(Rast){
(statement; statement; ...)

 }

}

While. Be careful of "while" loops.
while (condition) statement

As long as the loop condition tests true, the loop
continues. If the condition never becomes false, you
get an infinite loop.

NOTE: the "for each"
keyword sequence also may
be written as one word:
"foreach". This version of
SML does not support
nested "for each" com-
mands.

The break statement is used
to exit a loop before the loop
might otherwise terminate. It
is often used in a conditional
test inside the loop. The
break statement in this
example prevents division
by zero.

Notice that as with all
computer systems, some
operations yield very
small errors in floating
point values (1 / 5 yields
0.20000000000000001).

STEPS
select File / Open and
select WHILEFOR.SML from
the SML directory
run the script
change the while
condition and run the
script again
change the step value in
the for loop and run the
script again

page 14

Spatial Manipulation Language

Using Classes
A Class is a complex variable that consists of mul-
tiple members in the same way that a database record
consists of multiple fields. A class variable may have
any number of members and the members may be of
any data types, including other classes.

Class variables are designed for passing informa-
tion to and from complex functions. In many cases,

the members of a class variable are set only by
a function call, and so are read-only from the
script's point of view; they cannot be given
new values by assignment statements.

A class must be declared with the class key-
word, in the form:

 class COLOR background

which declares background to be a class vari-
able of the COLOR type. Members of a class
are specified in the form name.member (just as
database values are specified in the form
table.field). For example, the class Color has
five members that can be assigned values with
statements in the form:

 background.red=50
 background.green=75
 background.blue=20
 background.transp=0

The name member of the Color class is used
only to pass red, green, and blue values to the
class variable from the standard reference file
RGB.TXT. Thus

 background.name = "purple"
sets the RGB components of the class variable
background according to the definition of
"purple" in RGB.TXT . The name member is write-
only and cannot be read in other parts of the
script.

Class and member names
are case-insensitive.

STEPS
clear the SML window
with File / New
select Insert / Class
scoll through the list in
the top pane of the
Insert Class window
and select class COLOR

page 15

Spatial Manipulation Language

Member Inheritance and Type Checking
An important concept with classes is inheritance.
Class POINT2D represents the location of a 2-di-
mensional point; its members are the x and y coordi-
nates of the point. Class POINT3D is said to be
derived from class POINT2D. This means that a
class variable you declare as POINT3D not only has
its own member z, but also inherits members x and
y from class POINT2D. You can use inherited mem-
bers of a class in the same way you would its native
members.

The use of classes allows strong type checking.
Thus, when you invoke a function that requires a
POINT2D for a parameter, you can pass it any
POINT2D (or derivative class). But the function will
refuse any variable that is not a POINT2D. For ex-
ample, you could not pass such a function a Color
class, because Color is not a POINT2D. By con-
trast, since POINT3D is derived from POINT2D, you
could pass a POINT3D or anything else
derived from POINT2D to a function that
requires a POINT2D.

SML includes class equivalents of all of the
spatial object variable types (raster, vector,
CAD, TIN, and region). You can use either
type of construct for the spatial objects
referenced in your scripts.

STEPS
select Insert / Class
select POINT2D in the
top panel of the Insert
Class window and
examine its members
select POINT3D in the
top pane of the Insert
Class window and
examine its members
select RASTERINFO in
the top panel of the
Insert Class window
trace the line of class
and member derivation
shown in the bottom
panel

page 16

Spatial Manipulation Language

Class Methods
Some classes include their own functions and pro-
cedures, which are collectively called class
methods. Class methods may be used to pass val-
ues into a class or to perform some other operation
related to the class. Class methods are invoked us-
ing the form name.method(), where name is the name

of the class variable.

Class VIEWPOINT3D represents the set-
tings for 3D rendering in a 3D View window.
It includes member ViewPos, a POINT3D
class variable that holds the x, y, and z co-
ordinates of the viewer. A class method is
used to pass the required values into the
ViewPos class member:

Class VIEWPOINT3D vp;
Class POINT3D vpos;
vpos.x = 523487;
vpos.y = 1473245;
vpos.z = 2000;

vp.SetViewerPosition(vpos);

This class method is a procedure, and so
does not return a value.

The methods in the STRING class are all functions
that return either a string or a numerical value. Try
typing in and running the following example:

clear();

class STRING txt$, char1$, uc$;
txt$ = "watershed";

char1$ = txt$.charAt(1);
print(char1$);

uc$ = txt$.toUppercase();

print(uc$);

The charAt(n) method returns the n'th charac-
ter in the string (indexed with the leftmost
character at 0). The toUppercase() method re-
turns a copy of the string in all uppercase
characters.

STEPS
select Insert / Class
select VIEWPOINT3D in
the top panel of the
Insert Class window
scroll the bottom panel
and examine the class
methods

STEPS
select STRING in the top
panel of the Insert Class
window
scroll the bottom panel
and examine the class
methods

page 17

Spatial Manipulation Language

User Input
STEPS

clear the SML window
with File / New
type in the console
window prompt and
input statements shown
in the text and [Run] the
script
choose Insert / Function
click the Function Group
button, select Popup
Dialog from the Function
Group window and click
[OK]
choose File / Open and
select SML / POPUP.SML and
[Run] the script

The simplest type of user input and output uses the
console window. You can print prompt strings and
capture user responses using the print() and input$()
functions. The console input code is simple for the
author of the script, but console prompts may be
missed by an inattentive user.

clear(); print("Enter your name:")
name$ = input$()
print("Your name is: ",name$)

Popup dialog windows offer more flexibility and at
the same time are less likely to confuse the user.
SML includes predefined functions in the Popup
Dialog function group that open dialogs for input of
numeric or string values, yes-no responses, and dis-
play error messages. Where required,
the function parameters include a prompt
string that you can use to explain what
value or response should be entered by
the user.

You can also build your own dialog win-
dows to provide a consistent interactive
interface for your script. These windows
can include push buttons, menus, lists,
and other components that you are fa-
miliar with in the TNTmips user interface.

The Tutorial booklet
Building Dialogs in
SML provides a
complete overview of
procedures and tech-
niques for creating
and using your own
custom dialog win-
dows.

The popup dialog boxes
display a default value
if you use one in the
function call.

page 18

Spatial Manipulation Language

Using Arrays, Matrices, and Stringlists
STEPS

select File / Open and
select ARRAY.SML from the
SML directory
examine the script and
its comments
click [Run] to execute
the script
examine the statements
printed to the Console
Window

Numeric arrays are implemented as a variable type
and can be either one-dimensional or two-dimen-
sional. When you declare an array you must specify
the size of the array with a statement in the form:
array numeric arrayName[cols];
array numeric arrayName[rows, cols];

Position within an array row or column is indicated
by a subscript index number, with the first item de-

noted by index 1:
x = testArray[1]

You can resize an existing
array using the functions
ResizeArrayClear() (which
sets all values to 0) or
ResizeArrayPreserve()
(which preserves existing
values when the array is ex-
panded).

Matrices and stringlists are
implemented as classes. A matrix is always two-di-
mensional, so you must specify the matrix size as
follows:

 Some SML vector functions
that return a list of element
numbers or vertex positions
to an array automatically
expand the array size as
needed.

The Matrix function group also provides functions
to set and read matrix item values and to invert, trans-
pose, and perform arithmetic operations on matrices.
Matrix row-column position indices begin with 0.

A stringlist can be used to hold a list of string val-
ues. Methods in the STRINGLIST class allow you
to add strings to the end or beginning of the list, to
get a string by its index (beginning with 0), to re-
move a specified string or remove duplicates, and to
sort the strings. You can also use array subscript
notation to retrieve strings from the list by position.

class MATRIX matrix;
matrix = CreateMatrix(rows, cols);

page 19

Spatial Manipulation Language

Script Development and Editing
The easiest way to develop an SML script is to adapt
an existing script to the intended new task. Many
sample SML scripts are distributed with the TNT
products in the SCRIPTS directory, which has
subdirectories for different categories of scripts (vec-
tor, database, tool scripts, and others). You can also
use any of the examples from this tutorial booklet as
starting points for your own scripts.

You can open two SML script editing windows side
by side and use the SML copy and paste functions
to copy sections of code from an existing script into
the script you are developing. You can access the
SML cut, copy, and paste functions from the Edit
menu on the SML window or from a pop-up menu
that opens when you press the right mouse button
(with the cursor within the editing pane). If
you are running under the Windows or Mac
OS X operating system, these SML func-
tions use the operating system's clipboard,
so you can also cut and paste text between
the SML editor and another text editor.

 A number of low-cost or freeware text edit-
ing programs provide color-coded syntax
highlighting for various programming lan-
guages. The MicroImages website
(www.microimages.com/gvim) provides links
to a number of these editors
as well as configuration files
to enable SML syntax high-
lighting. The available
editors include UltraEdit and
TextPad (Windows), Vim
(various platforms) and Hy-
dra (Mac OS X 10.2 and
higher). Although these edi-
tors can highlight syntax,
they do not provide access
to the SML syntax checker.

STEPS
keep the script from the
previous exercise open
open another instance
of the SML window with
Process / SML / Edit
Script
move the new SML
window so it does not
obscure the first one
select several lines of
code from the first script
use the Copy and Paste
options on the Edit
menus to copy the
selected section to the
new script
choose File / Exit for the
new script window and
do not save changes

Right mouse-button menu with
Copy, Cut, and Paste options

SML function names, key-
words, operators, and
comments can be shown in
different colors in syntax-
highlighting editors.

http://www.microimages.com/gvim

page 20

Spatial Manipulation Language

Preprocessor Commands and Debugging
STEPS

select File / Open and
select DEBUG.SML from the
SML directory
select Insert Keyword
scroll to the bottom of
the list in the Insert
Keyword window to
see the SML
preprocessor directives
close the Insert
Keyword window
scroll through the script
to see how the
preprocessor
commands are used
[Run] the script,
following the steps on
page 5
examine the values
printed to the Console
Window

The SML preprocessor
directives can be inserted
using the Insert Keyword
window:

$ifdef
$define
$include
$ifndef
$else
$endif
$warnings
$import

The SML process includes a set of preprocessor
directives that are interpreted before all of the regu-
lar script statements. Preprocessor directives allow
you to set up alternative script modes and to call up
other scripts.

While you are developing a complex script you might
want to have a "normal" mode of execution and a
"debug" mode. In debug mode the current values
of variables would be printed to the console at vari-
ous points in the script to help you verify correct
execution of intermediate steps and/or identify
points of failure. You can set up the debugging
mode using the directive

$define DEBUG

and bracket all of your sets of debug statements
with the following pair of directives:

$ifdef DEBUG
[series of print statements]

$endif

To run the script in the normal mode you would
simply comment out the single $define statement,

deactivating all of
your debugging
code but leaving it
in place for later
use. The script in

this exercise is a version of the VIEWSHED script that
illustrates the use of printf() statements in a debug
mode.

You can have a script read and execute another SML
script by using the $include directive:

$include "another.sml"

The included script should be in the same directory
or Project File as the parent script. If you have sev-
eral scripts that need to use the same user-defined
function, the function definition can be in a sepa-
rate script that you "$include" in the other scripts.

page 21

Spatial Manipulation Language

SML Debugger and Script Timing
STEPS

select File / Open and
choose WHILEFOR.SML from
the SML directory
select File / Debug
in the SML Debugger
window, press
the Show Pseudo
Code icon button,
examine the code, then
press again to restore
the normal script view
scroll down to the
print("#####")
statement and left-click
in the left column
(yellow) to place a
break point (red symbol)
next to it
press the Run
icon button in the
Debugger window; note
the blue arrow indicator
stops at the break point
click on the break point
to clear it
press the Show
Timing icon button
press the Step
icon button ten
times; note the repeat of
the "for" loop
press the Stop
icon button
close the SML Debugger
window using the X
icon button in the
window title bar

The SML Debugger window provides a specialized
script execution environment designed to help you
analyze and debug a complex script. Icon buttons
on the window let you run the script as usual or step
through it one statement at a time. As the script
executes, a blue arrow symbol moves down in the
left column of the window to show the current ex-
ecution step. You can also insert temporary break
points by clicking in the left column of the window.
Execution of the script stops automatically when-
ever a break point is encountered. You can restart
execution after the break using the Run or Step icon
buttons. You can remove a breakpoint by clicking
on its symbol.

The SML Debugger window can also show the ex-
ecution time (in seconds to hundredth-second
accuracy) for each script step. For user-defined func-
tions and procedures, cumulative times for one or
more function calls are shown with the function defi-
nition, not where it is called in the script. You can
use this tool to determine whether you can improve
the speed and efficiency of your script.

Turn on the Show Pseudo Code icon button to
expand the script view to show pseudo assembly
code generated for each script statement.

Execution times
are shown in the
expanded left
column. Times
less than .005
second are
shown as 0.00.

Click in the left
column to place a
temporary break
point where script
execution will
automatically stop.

page 22

Spatial Manipulation Language

Toolbars and the SML Custom Menu

STEPS
choose Toolbars / Edit in
the TNTmips main menu
press [New] in the
Toolbar Editor window
edit the Name field to
read "SML Toolbar"
select Horizontal from
the Orientation menu
click [Add SML...]
select SML / VIEWSHED.SML

click [Icon...] and select
an icon
repeat the previous two
steps for SML /
SOILTEST.SML

click [OK] to finish

The Custom
menu
cascade lists
the scripts in
the CUSTOM

directory in your TNT
installation directory.

Use the Toolbar Editor to
add VIEWSHEDand SOILTEST

icons to a new SML
toolbar.

You can select and run any SML script without open-
ing the SML editor window by selecting SML / Run
from the Process menu. You can also add frequently-
used SML scripts to the TNT main menu. Simply
create a directory named custom in your main TNT
directory. Each script you place in this directory
then appears as an entry on a Custom menu on the
TNT main menu. Scripts in subdirectories in the
custom directory appear on submenus on the Cus-
tom menu. Selecting a script from the menu runs the
script.

You can also assign SML scripts to icons on cus-
tom toolbars. Use the Toolbar Editor window to
create or select a toolbar, set a horizontal or vertical
orientation, and set up label positions. Then select
one or more SML scripts and edit the Label and
Tooltip text boxes as illustrated to establish the in-
terface text for each. Press the Icon button to select
an icon for each script. The steps in this exercise
create a new SML toolbar with two script icon but-
tons.

page 23

Spatial Manipulation Language

Raster Objects
A full set of raster functions let your SML scripts
read, create, and analyze raster objects. You can write
mathematical expressions to compute values for a
new raster object from one or more input rasters or
use various higher-level SML functions to create new
raster values.

Use the GetOutputRaster() and CreateRaster() func-
tions to create new raster objects. When you create
an output raster object, give some thought to your
choice of the specifics of its data type: binary, inte-
ger, signed, unsigned, and floating point. For
example, if your script's computations can create
negative output cell values, be sure to specify a signed
data type. Several functions provide access to raster
subobjects.

The RATIOSCL sample script is designed to compute
the ratio between two raster image bands (assumed
to be 8-bit unsigned rasters) and rescale the result to
the 8-bit unsigned data range for the output raster.
The raw ratio values could range from .004 (1 / 255)
to 255, and separate scaling is applied for ratios less
than or greater than 1. The scale factor for the upper
range is based on the maximum ratio value for the
entire image area. This necessitates
storing the raw ratio values in a tem-
porary floating point raster,
computing the
scale factor from
the maximum ra-
tio value, then
computing the
rescaled values
and writing them
to the final output
raster.

Scaled ratio raster (left) produced
by RATIOSCL.SML. from CB_TM / RED

(center) and CB_TM / PHOTO_IR (right).

STEPS
select File / Open and
select RATIOSCL.SML from
the SML directory
study the script
structure and statement
syntax
run the script
when prompted for a
raster for N, select
PHOTO_IR from the CB_TM

Project File in CB_DATA

select RED from the CB_TM

Project File for input
object D
create a new raster
object for RATIOSCL

for this exercise and
those on the following
pages, use the Display
process to display the
input object(s) and the
new object(s) created
by the script

page 24

Spatial Manipulation Language

Vector Objects
A growing list of functions support vector object
creation, reading, writing, and manipulation. Look
for vector function definitions in the Vector, Vector
Network, and Vector Toolkit groups.

A simple script illustrates basic functions for input,
output, and one of the vector combinations:
GetInputVector(Voperator);
GetInputVector(Vsource);
GetOutputVector(Vor);
Vor = VectorOR(Voperator, Vsource);

Vector extraction operations are supported by simi-
lar functions. For an example, refer to the sample
script SCRIPTS / VECTOR / VECEXTR.SML from the TNT
Products CD.

SML also supports more complex interaction be-
tween vector objects and objects of other types. You
have already seen VIEWSHED.SML (page 5). Another
example is provided in SCRIPTS / FOCAL / VECFOCAL.SML,
which uses points in a vector object to select cells in
a raster object and applies the FocalMean() func-
tion to each of those cells in turn. Open that script
and observe how the vector coordinates
(x=V.point[i].Internal.x) are translated into map coor-
dinates using the georeference function
ObjectToMap(V,x,y,georefV,xVector,yVector), and
how MapToObject(georefR, xVector, yVector, R,
rCol, rLine) finds the raster cell corresponding to the
map coordinates.

Vector functions are listed in
the Vector (above), Vector
Network, and Vector Toolkit
function lists. The short

script
shown
above uses
VectorOR()
to combine
two input
vector
objects into
a single
output
vector
object.

VectorOR() ➱

STEPS
select File / Open /
*.SML File and open the
script VECTCOMB.SML from
the SML directory
run the script using for
input HYDROLOGY and ROADS

from CB_DATA / CB_DLG

page 25

Spatial Manipulation Language

Using the Vector Toolkit
The functions in the Vector Toolkit function group
enable a script to modify elements in an existing vec-
tor object or add new elements to an object. To
modify an existing vector object, the script must first
initialize the vector toolkit for use with that object:

GetInputVector(V);
VectorToolkitInit(V);

[Editing operations with vector
toolkit functions]

CloseVector(V);

When you will be adding elements to a new output
vector object, toolkit initialization can be done when
the object is created. The second argument to the
GetOutputVector() function is an optional flag string
that can be used to set the topology level and to ini-
tialize the vector toolkit. For example, setting this
argument to "VectorToolkit,Polygonal" initializes the
vector toolkit and establishes polygonal topology for
the vector object.

The sample script VTOOLKIT.SML shows how some of
the vector toolkit functions can be used to create el-
ements in a new vector object. The script first opens
an input raster and finds its geographic
extents and the map position of the cell
with the highest value. The script then cre-
ates a new vector object with implied
georeference to the input raster object, adds
a point element at the position of the maxi-
mum cell value, and draws a vector line
outlining the raster extents. The location
on this boundary line that is closest to the
maximum cell point is then found, and a
line is added connecting these two loca-
tions. The vector object is then validated
(to check topology and compute standard
attributes) and closed.

Raster DEM16_BIT and the vector object
created from it by the sample script.

STEPS
select File / Open / *.SML
File and open the script
VTOOLKIT.SML from the SML

directory
study the script
structure and comments
run the script using for
input DEM_16BIT from the
CB_ELEV Project File in
CB_DATA

page 26

Spatial Manipulation Language

CAD and TIN Objects
A growing list of functions support CAD and TIN
object creation, reading, writing, and manipulation.
Sample script CAD.SML uses some of the numerous
CAD functions. The script uses a raster object as
input to define geographic extents and georeferencing
and creates a new georeferenced CAD object to
which several elements are added. A circle element
is drawn centered at the geographic center of the ras-
ter, then a line element is drawn from the center to
the circumference of the circle. Several box elements
are then added around the center point.

Sample script TIN.SML illus-
trates some of the TIN
functions. It uses the
TINCreateFromNodes()
function to make a new
TIN object from arrays of
node coordinates. The co-
ordinate arrays are created
in this case by reading the
coordinates of points in a
3D vector object. The
script also uses functions
to read the number of TIN
hulls, edges, and triangles.

STEPS
select File / Open /
*.SML File and open the
script SML / CAD.SML

examine and then run
the script using raster
object HAYWARD from the
HAYWDEM Project File in
SF_DATA

open the script SMl /
TIN.SML

study and then run the
script, using object
ELEV_PTS from the
SURFACE Project File in the
SURFMODL directory for the
input

page 27

Spatial Manipulation Language

Region Objects
You can also create and use region objects in SML
scripts. Region objects represent the outline of a
region of interest in operations on other spatial ob-
jects. SML functions in the Region function group
allow you to open and save region objects, check if
particular map coordinates lie within the region, and
perform region combination operations (AND, OR,
Subtract, and XOR). Several functions in the Ob-
ject Conversion group allow you to convert vector
and binary raster objects into region objects.

SML provides a simple way to use a region object to
restrict actions on a raster object. The simple con-
struction

for each RastVar in RegionVar {
[actions]

}

restricts the actions to raster cells that lie within the
region boundaries. This construction provides a sim-
pler alternative to using values in a binary mask raster
to control the operations.

The sample script REGION.SML illustrates the
use of some of the region functions. The
script opens two region objects and uses the
RegionAND() function to find the region
that is their intersection. This new region
is then used to find information about point
elements in the corresponding area of an
input 3D vector object. The script uses the
PointInRegion() function in a "for each"
loop to examine each point's coordinates
and select only those points that lie within
the region.

STEPS
select File / Open / *.SML
File and open the script
REGION.SML from the SML

directory
study the script
structure and comments
run the script using for
input the region objects
POLYREGION and RECTANGLE

from the SML / REGION

Project File and vector
object ELEV_PTS from the
SURFMODL / SURFACE Project
File

page 28

Spatial Manipulation Language

Database Objects
Sample script DATABASE.SML shows how to read at-
tribute values from a database. The syntax is an
extension of the TABLENAME.FIELDNAME construction
used in queries. In an SML script, the database field
reference must also specify the object, the database
subobject (a separate database is maintained for each
type of element in a vector or TIN object), and the
element number. If the field being read is a string
field, you must also append the "$" character to the
end of the field reference:

 string$ = Vect.poly[4].table.field$.

Functions to create and modify databases are found
in the Database function group. This group includes
functions to create new tables, to add or insert fields
in tables, to write new records in a table, and to at-
tach records to elements in the spatial object. Sample
script DB2.SML provides examples of these operations.
It creates a new vector object with points located at
the centroids of polygons in the input vector object,
creates a point database and table, and copies selected
attributes from each polygon to the associated point
element.

DATABASE.SML refers to the
ACRES field of the SOILTYPE

table and the SOILNAME

field of the WILDLIFE table.

STEPS
open the sample script
DATABASE.SML from the SML

directory
run the script using
object HSOILS from the
HAYWSOIL Project File in
the SF_DATA directory for
input
open the sample script
DB2.SML from the SML

directory
run the script using
object CB_SOILSLITE from
the CB_SOILS Project File
in the CB_DATA directory
for input

page 29

Spatial Manipulation Language

Converting Objects

Soil test
sample
points

Field
boundary
polygon

Computed soil pH
surface raster

Computed soil
organic matter
surface raster

One common rationale for creating an SML script is
the desire to automate a multi-step processing se-
quence that needs to be performed repetitively on a
number of different input datasets. The ability to
convert geospatial data from one type to another
within SML gives you great flexibility in designing
such a script. The standard TNTmips data conver-
sion processes lead the industry in support for data
types and functionality. Many of these conversion
processes are available as functions in SML in the
Object Conversion function group. Other special-
ized conversion functions in the Surface Fitting group
interpolate a raster surface from a vector or TIN in-
put object.

The SOILTEST.SML sample script automates the pro-
cessing of soil sample data and uses several types of
object conversion functions. The script reads a se-
ries of soil chemistry values stored in a database table
attached to input vector point elements representing
sample locations. For each type of value (soil pH,
organic matter content, and others) the script uses a
surface fitting function to create a surface raster. In
intermediate steps the script uses a vector polygon
representing the field boundary to create a blank ras-
ter to use as a mask for each surface. It also creates a
region from the
polygon and uses
the region to
write the value
1 into every
cell in the
mask raster
that lies in-
side the field
boundary.

STEPS
open the sample script
SOILTEST.SML from the SML

directory
study the script, then run
it using objects in the SML

/ SOILTEST Project File for
input. Use object SAMPPTS

for the "Points" and
object BOUNDARY for
"Boundary"
accept the default values
for the other parameters
requested by popup
dialog windows

page 30

Spatial Manipulation Language

Sample Script: Extract Polygons
STEPS

choose File / Open /
*.SML File and select SML

/ TIGER1.SML

study the script
structure and comments

The sample script TIGER1.SML provides an example of
vector and database processing in SML. It extracts
specified lines from an input vector object, writes
them into an output vector object, and transfers in-
put line attributes to output polygon attributes.

TIGER1.SML was designed to process vector ob-
jects imported from TIGER line files (2000 version)
produced by the United States Census Bureau.
TIGER geodata is organized by county, and inte-
grates line geodata of many types (hydrology,
roads, administrative and census boundary lines)
into one vector data layer. Topological polygons
result from the intersection of these various line
types, but individual polygons have little geo-
graphic meaning. Area attributes are coded only
as attributes of the left and right sides of lines.
This characteristic of TIGER data makes it diffi-
cult to access and display areal information using

the raw vector objects.

Area boundary lines in the TIGER vector, such as
city and town boundaries, can be identified by
the inequality of particular attribute values on ei-
ther side of the line. This script finds city
boundary lines in an input TIGER vector object
and writes each line to a new output vector ob-
ject. When all line elements for a particular city
boundary have been transferred, they intersect
to form a polygon in the output vector. If the
current line completes a new polygon, the city
name is read from the input line database and a
new polygon database record containing the
name is created for the output vector. A multi-
input version of this script has been used at
MicroImages to process all of the 93 county TI-
GER vector objects for the state of Nebraska to
produce a single statewide city polygon object.

TIGER vector for a single
county with lines styled
based on their attributes.
TIGER files are available for
free download at
 www.census.gov.

Extracted city polygons for
the same county, with labels.

More about the extract polygon script is available in an online document at

http://www.microimages.com/relnotes/v65/smltiger.pdf

page 31

Spatial Manipulation Language

Sample Script: Network Routing
STEPS

choose File / Open /
*.SML File SML /
NETWORK1.SML

study the script structure
and comments
run the script using
objects FARMS, PLANTS,
and ROADS from the SML /
NETWORK1 Project File

Sample result from the
network script. Farm
locations (circles) have been
styled in the same color as
the processing plant location
(squares) that is closest to it
along the road network.

More about the network script is available in an online document at

http://www.microimages.com/relnotes/v65/smlnz.pdf

The sample script NETWORK1.SML shows a more com-
plex application of vector and database processing
in SML. It uses network analysis functions to ad-
dress the problem of efficient delivery of materials
from numerous dispersed locations (such as farms)
to a small number of destinations (such as process-
ing plants). The objective is to determine the
shortest network distance from each farm to each of
the processing plants, so
each farm can transport
goods to the nearest plant.
A script is required to solve
this problem because the
farm and plant locations are
represented as points in
vector objects separate
from the object containing
the road network.

For each farm and process-
ing plant, the script adds a
node to the roads object at
the closest point on the clos-
est line. It keeps track of the
element numbers of these
two sets of added nodes in
a pair of arrays so that net-
work distances can be associated with the correct
farm and plant. Network analysis functions are then
used to compute the required set of distances, which
are stored in a new database table for the vector
points representing farms. For each farm point, there
is one attached record for each processing plant,
showing the minimum network distance.

page 32

Spatial Manipulation Language

Creating and Opening a View Window
STEPS

select File / Open /
*.SML File and select
VIEW.SML from the SML

directory
run the script using as
input raster _8_BIT from
the CB_COMP Project File
in CB_DATA sample data
directory
select View / Close to
close the window

An SML script can create and open a View window
to display input or output objects used in the script.
The View can also be used to provide user interac-
tion with the objects via the standard graphical tools
found in the Display process.

View windows are created using the Motif widget
(dialog component) set that is used to create all of
the windows in the X Windows versions of the TNT
products. In Motif, any window (dialog) begins as
an instance of class XmForm, a generic container
widget. The GroupCreateView() function is used to
create the view widget to display a geodata group

within the parent dialog. Other func-
tions in the Geodata Display, Geodata
Display Group, Geodata Display Lay-
out, and Geodata Display View function
groups allow you to set up a group to
display, to add objects, and to access
coordinate and scale information.

Sample script VIEW.SML shows the basic
steps required to open a view window
of a group and display an input raster.
The script in the next exercise displays
several data layers and provides a
graphical point tool for obtaining coor-
dinate information from the View. The
movie scripts and APPLIDAT scripts
discussed subsequently provide further
examples.

SML also provides another, simpler way
to provide user interaction between a

script and data in a View. Tool Scripts and Macro
Scripts can be launched from a View window in the
Spatial Data Display process and can automatically
access and operate on the objects in the View. These
scripts are discussed in detail in a later section of
this booklet.

For more information about
creating dialog windows
consult the tutorial booklet
Building Dialogs in SML.

page 33

Spatial Manipulation Language

Coordinate Systems in Views
STEPS

select File / Open / *.SML
File and choose SML /
PTCOORD.SML

run the script
left-click in the window to
place the point tool
right-click to view
coordinates in the
Console window
try various point locations
to see how the different
coordinate types vary
study the script to see
how the coordinate
transformations are
performed
Close the Find Point
Coordinates window
when you are finished

Previous exercises have discussed SML functions
that use an object's georeference information to con-
vert position information between object coordinates
(such as raster line and column numbers) and map
coordinates. When you display spatial objects in a
view within a dialog window, several other coordi-
nate systems come into play. Sample script
PTCOORD.SML will help you explore these coordinate
systems and illustrates the resources available to
convert between them. The script displays a preset
raster (with UTM coordinates) and vector object
(with latitude/longitude coordinates) and provides a
point graphic tool with which you can select a posi-
tion. When you apply the tool (right-click), the point
position is reported in the console window in vari-
ous coordinate systems.

A graphic tool used in a view returns posi-
tions in view coordinates. For a single group
view, view coordinates are the group map
coordinates. The group coordinate system
is determined initially by the georeference
of the first layer added to the group, but can
be modified by a script by resetting the Pro-
jection class for the group. Screen
coordinates are the coordinates of the draw-
ing area of the view (in pixels), where the
obejcts are actually displayed. If you want
the script to draw additional features into
this drawing area, the drawing functions re-
quire screen coordinates. Each layer in the
view also has layer coordinates, which are
the object coordinates for the object in the
layer, as well as layer map coordinates. The Geodata
Display View function group includes functions to
translate between view
coordinates and screen,
layer, and layer map coor-
dinates.

page 34

Spatial Manipulation Language

Movie Generation Scripts
An SML script can create and record custom anima-
tions from your geospatial data. The sample script
in this exercise creates a movie file showing a series
of viewsheds computed from an elevation raster at
different points along a vector line.

Any animation consists of a gradually-varying se-
quence of static frames. A movie generation script
captures frames from the contents of one or more
view windows created by the script and copies each
frame into an output MPEG or AVI file. The movie
can therefore record any sequential change in the
view window(s) used to create the frames. Func-
tions in the Frame and Movie function groups are

used to set up the generic frame and movie
parameters, capture the view window con-
tents to a frame, and copy the frame contents
to the output file. You can also annotate
each frame with text or position markers us-
ing functions in the Drawing function group.

Sequential changes in the View window can
be achieved in several ways. The script

could add and remove a series of pre-pre-
pared layers to and from the view. It could
also modify the display parameters for a
single continuing layer. For vector objects,
this could involve basing the element styles
on a sequence of varying attribute values
(such as population in different years). The
final method is exemplified by the VSHEDMOV

script: the script itself computes the
changes from the supplied data and param-
eters. For each frame in this movie, the script
computes the current viewshed and dis-
plays it in the view window in yellow over a
shaded-relief rendering of the elevation
model.

STEPS
choose File / Open /
*.SML File and select
SCRIPTS / MOVIE /
VSHEDMOV.SML

study the script
structure and comments

More about the movie generation scripts is available in an online document at

http://www.microimages.com/relnotes/v65/moviesml.pdf

page 35

Spatial Manipulation Language

3D Simulation Scripts

Movies created from these sample SML movie scripts can be downloaded from

http://www.microimages.com/promo/smlmovies

An SML movie script can also use the 3D perspec-
tive rendering capabilities of TNTmips to record
custom 3D animations. A script can open a 3D per-
spective view window and change the viewing
parameters for each frame in the movie, allowing
you to move over, on, and around a 3D surface. SML
incorporates all of the functionality of the 3D Simu-
lation process in TNTmips, but expands your
control over the viewing parameters.

Class members and methods in the
VIEWPOINT3D class are used to manipulate
the settings for the 3D view. Each 3D view has
a viewer position and a position that the viewer
is looking at, the point where the current view is
centered. SML gives you complete control over both
positions. You can set viewer and view center posi-
tion coordinates explicitly for each frame, or move
either position a specified distance or direction rela-
tive to the previous position. Either position can be
rotated around the other. You can also set either
position and then specify an azimuth angle, eleva-
tion angle, and distance
to define the other.

The PATHCHT1 script
copies both 3D and 2D
views into each movie
frame. The viewer and
view center positions
are computed from 2D
vector lines that are
displayed in the 2D
view but hidden in the
3D view. The current
viewer and view center
positions are shown by symbols drawn into the 2D
portion of each frame after the views are captured.

STEPS
choose File / Open /
*.SML File and select
SCRIPTS / MOVIE /
PATHCHT1.SML

study the script structure
and comments

To record a movie from an
SML script, you must have
software capable of
encoding MPEG files (any
computer platform) or AVI
files (Windows platform
only). When recording
begins, a window opens to
allow you to select
compression options.

page 36

Spatial Manipulation Language

Batch Import with SML
STEPS

choose File / Open /
*.SML File and select
SCRIPTS / RASTER /
IMPORT_SRTM.SML

study the script
structure and comments
choose Insert / Class
scroll down in the list in
the Insert Classes
window to class
MieUSERDEFINEDRASTER
examine some of the
other Mie classes
close the Insert Class
window

Some of the many SML
classes available to
automate Import /
Export tasks.

Four one-degree
SRTM height tiles
(covering part of
Ecuador) imported
with the script in
this exercise. The
raw height grids
include numerous
null (no data) cells
(yellow in this
image) on slopes
facing away from
the radar sensor.

You can use an SML script to automate repetitive
tasks such as importing tens or hundreds of data
files with the same format. TNTmips supports the
import or export of dozens of external file formats.
The program code needed to import or export each
of these formats is encapsulated in SML as a class
structure beginning with the letters "Mie". For ex-
ample, class MieGeoTIFF supports the import or
export of GeoTIFF images. The Mie classes are used
in conjunction with functions in the Import Export
function group that allow you to import to or export
from a specific object type (raster, vector, CAD, da-
tabase, or TIN). Class members for each Mie class
(or a parent class) allow you to set process param-
eters such as raster size, compression, vector
topology type, and others.

The script for this exercise performs a batch import
of raw, ungeoreferenced surface height files pro-
duced by NASA's Shuttle Radar Topography
Mission (www.jpl.nasa.gov/srtm). The script uses
the MieUSERDEFINEDRASTER class to import the
elevation grids to rasters. Each height file is one
degree of latitude and longitude in extent. The script
reads the latitude and longitude of the southwest
tile corner from the file name and georeferences each
imported raster by creating control points at the cor-
ners of the raster.

page 37

Spatial Manipulation Language

SML Layer in Display

The Add SML icon button

The standard display process (Display / Spatial Data)
supports the use of an SML script as a layer, just as
a raster, vector, CAD, or TIN object can be a layer.
An SML script layer can use flexible cartographic
drawing functions to create special map symbols and
neatlines.

The sample script ARROW.SML is designed to draw an
oriented magnetic declination map symbol in a lay-
out. The SML layer should be alone in a group. It
determines the true north direction from the previ-
ous map group in the layout. Sample script
neatline.sml draws a neatline around a group, and

includes addi-
tional drawn
items that you
can turn on by
removing the
comment char-
acter (#) from
the relevant
script state-
ments.

The Coordinates panel lets you relate
the script layer to the map coordinates
of the other layers in the display.

The Script tabbed panel in the SML
Layer Controls window contains the
interface for editing and running scripts.

STEPS
run Display / Spatial Data
and open a new 2D
Group
click Add SML in
the Group Controls
window
select the Script tab in
the SML Layer Controls
window and choose File
/ Open / *.SML
select SML / ARROW.SML

in the Coordinates panel,
use the Projection button
to change the coordinate
system to Universal
Transverse Mercator
click [OK] to close the
Layer Controls window
examine the display,
then remove the
SML layer
add object _8BIT

from the CB_COMP

Project File in CB_DATA

click Add SML and
select SML /
NEATLINE.SML

in the Coordinates panel,
set the coordinate
system to United States
State Plane 1927 and the
Zone to Nebraska North
click [OK] to close the
Layer Controls window

ARROW.SML draws
an oriented map
symbol that
shows true
north and
magnetic north
directions.

page 38

Spatial Manipulation Language

A GeoFormula layer is a computed display layer that
uses one or more input objects to derive a result for
display. It gives you a way to apply SML manipula-
tions to objects “on the fly” rather than running
separate processes to prepare output objects for dis-
play. A GeoFormula layer contains a "virtual object";
it does not create an output object that is saved in a
Project File. Instead, it creates a display layer that
releases all its system resources (such as disk space
and memory) when you are finished with it.

For example, red and infrared bands of raster imag-
ery can be combined to produce a Transformed
Vegetation Index (TVI). Of course TNTmips offers
a simple process that produces a TVI output raster
object from selected input objects if you want to re-
tain the TVI output for other uses. But if you just
want to view the TVI result and do not care to keep
the output object, you should use a GeoFormula dis-
play layer.

A GeoFormula script can be saved as a reusable file.
A GeoFormula layer can be combined with any num-

ber of other layers in the TNT display
process to create a complex visualiza-
tion of multiple geospatial objects.

The GeoFormula feature is primarily
provided for dynamic visualization
tasks in the display process. You can
also run a separate GeoFormula pro-
cess (Interpret / Raster / Combine /
GeoFormula) to create permanent out-
put objects for other uses.

SML and GeoFormulas
See the tutorial booklet
Using Geospatial Formulas
for a complete introduction
to constructing and using
GeoFormulas

GEOFRMLA / BROV_UMN.GSF

illustrates the dynamic
enhancement of low-
resolution TM imagery with
a high-resolution SPOT
image.

STEPS
remove the SML layer
from the display group
click Add
Geoformula /
Quick-Add
Geoformula
select GEOFRMLA /
BROV_UMN.GSF

for input, select three
TM bands from the CB_TM

Project File and the
SPOT_PAN image in the
CB_SPOT Project File, both
in CB_DATA

close the display group when you have completed this exercise

page 39

Spatial Manipulation Language

Script Objects and Encryption
STEPS

select File / Open /
*.SML File and choose
SML / VIEWSHED.SML

select File / Save As /
RVC Object (Encrypted)
create a new Project
File and SML object as
prompted
select an encryption
password in the
Encryption Options
window
if you are not using
TNTlite, use File / Open
to select your encrypted
script (the SML window
then shows only an
encryption message)

So far you have worked with SML scripts that have
been saved as independent text files with the SML
file extension. These are 1-byte text files that can
be opened with any text editor. If you do edit a script
file with another editor, be sure to save it with the
SML extension.

An SML script also can be saved as a script object
in a Project File (use File / Save As / RVC Object).
This allows you to put input, output, and script ob-
jects all in the same file if you find this more
convenient. Another advantage to storing a script
in a Project File is the ability to encrypt a script
object. You may want to distribute your scripts to
others but still protect your development efforts and
proprietary algorithms. An encrypted script object
can only be run by authorized TNTmips users and
cannot be viewed or edited by anyone (including the
creator; always keep an unencrypted copy of the
script for reference or further development). You
can allow an encrypted script to be run by any
TNTmips user or limit its use to computers with a
specific software license key number. You can also
choose to require a password for running the script.

NOTE: A license key is
required to run an encrypted
SML script object. Thus
encrypted scripts cannot be
run in TNTlite.

Use the Save As / Encrypted option to create an
encrypted copy of the script in a Project File. If
you open an encrypted script in the SML window, it
shows only an encryption message. IMPORTANT:
Always keep an unencrypted copy for editing.

page 40

Spatial Manipulation Language

APPLIDATs
STEPS

choose Process / SML /
Run
select SCRIPTS / APPLIDAT /
BENCHMRK

click the Instructions icon
button on the toolbar
press [Close] on the
Help window
click the TNT Benchmark
icon button
try some of the
benchmark processes,
then press [Exit]
click the Exit button on
the toolbar

select File / Open / RVC
Object in the SML
window
select SML / SMLLAYER.RVC /
ARROW

select File / Edit Toolbar
Icon
in the Select Bitmap
Pattern window, click the
Set button and choose
the Advisor set from the
list
select the "gold"
icon illustrated
and click OK
click [Yes] to
confirm your choice in
the Verify dialog box

Benchmark APPLIDAT
toolbar

You can use SML to create self-contained, turnkey
geospatial application products called APPLIDATs.
An APPLIDAT can include an SML script or a series
of scripts along with the geospatial data to be pro-
cessed. Since data and scripts are bundled, they are
loaded together automatically when the APPLIDAT
is run. There is no need for the user to navigate and
load the data manually. An APPLIDAT is therefore
ideal for providing data with custom processing ap-
plications to users who are not familiar with the TNT
interface.

An APPLIDAT includes one or more SML script
objects in a TNT Project File that has been renamed
with the .SML file extension. Users can run an
APPLIDAT by double-clicking on the file or by us-
ing a desktop shortcut. Running an APPLIDAT
launches TNTview (with the standard interface hid-
den) and opens a custom toolbar with an icon for
each included script. Icon buttons to open the stan-
dard TNTview and to Exit the APPLIDAT also are
included automatically. You can write the compo-
nent scripts to use data stored in the same SML
Project File or in an accompanying standard Project
File in the same directory.

When a script object is created in a Project File, TNT
automatically assigns it a default icon subobject,
which you may edit or change for a different icon.
When the APPLIDAT is launched, script icon but-
tons are added to the toolbar from the left in
alphabetical order of the script names. If your
APPLIDAT includes several scripts that should be
run in a defined order, name the scripts so the alpha-
betical order of their names follows the defined
processing sequence. A script object's description
is used automatically as the ToolTip for its icon but-
ton.

ExitTNTviewInstructions

TNT Benchmark SML script

page 41

Spatial Manipulation Language

Providing APPLIDAT Instructions
SML lets you write APPLIDATs that have a discov-
erable interface. Your users need not be trained in
(or even aware of) the TNT products. All the in-
structions needed can be discovered the first time
the APPLIDAT is used, or easily rediscovered after
a lapse of time. Simply include in your APPLIDAT
a copy of the HELP.SML script from the BENCHMARK

APPLIDAT. This script creates a dialog window to
display HTML-formatted text and illustrations. The
HTML instruction set is stored as a subobject of the
HELP.SML script.

An instruction set is easy to create and maintain be-
cause you can use any editor that supports the HTML
format. Thus you can write your instructions in a
program such as Microsoft Word and use its Save
As... option to save the file in HTML format. To
associate your new help file with the APPLIDAT,
edit the HELP script in the SML script editor and se-
lect Add Text Objects from the File menu. When
you select your HTML file, TNT copies it to a
subobject of the script.

STEPS
choose File / Open /
*.SML File in the SML
window
select BENCHMRK.SML in
the Select File window
select the Help script
object in the Select
Object window
examine the script
structure and comments

NOTE: to open script objects
in an APPLIDAT Project File
(.SML file extension) in the
SML editor, you must use
File / Open / *.SML File.
When you select an SML file
that is actually a Project File,
a Select Object window
opens to allow you to select
a script object from within the
file.

You can copy this
Help script to
your own
APPLIDAT file
and use it directly
to create your
Instructions or
Help window. An
instruction set
won’t become
separated from
its APPLIDAT
because it is
bundled with the
other resources.

page 42

Spatial Manipulation Language

BIOMASS2 APPLIDAT
The BIOMASS2 APPLIDAT was written by
MicroImages to provide an example and prototype

of a turnkey APPLIDAT product. It il-
lustrates how an APPLIDAT can let the
user carry out a series of operations on
the input data and automatically pass
intermediate products along to the next

operation. In this example the application would
allow a farmer to determine crop biomass for any
designated area from a color infrared image, dis-
play farm assets over the image and biomass map,
and display a 3D perspective view of the image and
biomass map. The Instructions for the BIOMASS2
APPLIDAT provide a more detailed overview of
each operation.

The APPLIDAT file (BIOMASS2.SML) includes three
processing script objects: Biomass (Biomass Map-
ping), Pinmap (Asset Management), and View3D
(3D Simulation) that are designed to be run in that
order (note the alphabetical order of the script names
and the positions of their icons in the toolbar). In-
structions for the product are contained in the script
called About (note that the script itself contains the
HTML formatted instructions, rather than using an
HTML subobject). All of the input data are in the
APPLIDAT file. Spatial objects produced by the
APPLIDAT are stored and retrieved as needed in an
accompanying Project File BIOMASS.RVC.

After you have run the APPLIDAT, you should ex-
amine the structure of the component scripts. Each
script contains code to create its dialog window and
controls, callback procedures assigned to those con-
trols, and instructions for input and output of data.
You can use these as models in developing your own
turnkey APPLIDAT programs.

STEPS
select Support /
Maintenance / Project
File from the TNTmips
main menu and examine
the contents of
BIOMASS2.SML in the SCRIPTS

/ APPLIDAT directory
exit from Project File
Maintenance and select
Process / SML / Run
choose BIOMASS2
click the Instructions
icon button and read the
instructions
click on the Biomass
Mapping icon button,
define an area to map,
filter the result, and
convert the result to a
vector
exit from the Biomass
Mapping window
run the Asset Mapping
and 3D Simulation
applications
exit from the BIOMASS2
APPLIDAT when you are
finished

Biomass
Mapping

Asset
Management

3D
Simulation

Instructions

page 43

Spatial Manipulation Language

Tool Scripts and Macro Scripts
Tool Scripts and Macro Scripts are specialized SML scripts launched from a View
window that can automatically access and operate on the objects in the view. You
can create tool scripts or macro scripts that enable any user to perform custom
procedures on spatial data layers loaded into the View. You can set up a general-
purpose tool script or macro script to be available from any type of 2D View
window or save a data-specific script with a particular group or layout. Scripts
saved with a layout that becomes part of an atlas are also available for use in
TNTatlas. Every View window offers menu selections that let you easily add and

delete Tool scripts and Macro
scripts (Options / Customize).

For the script writer, macro
scripts and tool scripts pro-

vide a streamlined way to provide custom processing capabilities that require
visual interaction with the spatial data. To do this in a standard SML script, you
have to provide the code to create and manage the View window and its contents.
But because macro scripts and tool scripts are invoked from a View window, most
of that management is taken care of automatically, and you can focus on coding
the custom processsing itself.

Macro scripts and tool scripts:
• are executed from an icon button on a View window toolbar or from a menu;
• can access features of the current view, such as layers, extents, projection,

selected elements, zoom factor, scale, and styles;
• can operate on objects in the current view or objects containing the same area;
• can add a newly-created layer to the view;
• can start an external program and provide it with data derived from the current

view.
A tool script invokes a drawing tool and/or a dialog window (defined by the script-
writer) that allow the user to interact with the spatial data in the view window.
For example, the user could outline an area or select particular elements to be
processed. A macro script does not allow such graphical interaction, but can be
set up with a drop-down menu that provides program options.

Tool scripts and macro scripts
can be launched from icon
buttons on a View window's
toolbar or from the Tool and
Macros menus.

page 44

Spatial Manipulation Language

Macro Script Setup
Macro scripts can be launched from the View window's Macros menu (which
appears once you have installed a macro script) or from an optional icon button
on the toolbar. To add a macro script, choose Options / Customize / Macro Scripts
from the View window, which opens the Customize Macro Scripts window. If you
want to add an existing script, click on the Add icon button to open the Select File

window so you can navigate to the
script and select it. To create a new
macro script, click on the New icon
button. A Query Editor window
opens with a default script contain-
ing a list of predefined symbols that

you can use in the macro
script. The Query Editor
window includes all the
script-creation and editing
features of the standard
SML window.

Once you have created or added the macro script, the Macro Script Properties
window opens. You can choose whether the script is accessible from all Views of
the current type or only from the current saved group or layout. Choose Simple
from the Type menu to have your tool script execute automatically without further
input from the user. Choose Menu if you want drop-down choices presented
from the Macros menu entry and the icon button; the Menu Choices text field
then becomes active so you can enter the menu choices needed for the script.
Use the Icon toggle button to indi-
cate whether a script icon button
appears on the View window toolbar;
click on the default icon to open a
dialog to select an appropriate icon.
The text you enter in the Name field
is used for the menu entry in the
Macros menu and for the script icon
button's ToolTip.

The Test button at the bottom of
the window lets you run your script
without closing the setup windows.
Click OK in the Macro Script Properties and Customize Macro Scripts windows
when you are done adding, developing, and/or testing your script.

The Use With menu options vary depend-
ing on the type of View: Group, Display
Layout, or Hardcopy Layout. You can
install the macro script for all windows of
that type or only the current one.

Sample macro scripts
can be found in the
MACRSCR subdirectory in
the SCRIPTS directory.

New
Add

Properties

page 45

Spatial Manipulation Language

Sample Macro Script: Zoom to Scale
The Zoom to Scale macro script (ZOOMTO.SML) is one
of several sample macro scripts are provided in the
MACRSCR subdirectory of the SCRIPTS directory. This
macro script lets the viewer redisplay the View win-
dow at one of several map scales selected from the
script button's dropdown menu (or the script's
submenu in the Macros menu cascade). For proper
script function, the objects in the view window must
be either georeferenced or scale-calibrated.

The scale menu selections are not predetermined by
the Zoom to Scale script. When you install the
script, you are free to set up the menu choices with
the range of scale selections most appropriate for
your data. The script accepts scale input from the
menu as either map scale or ground dimensions. If
the menu entry is purely numeric, it is interpreted as
the denominator of the map scale fraction. For ex-
ample, 12000 is interpreted as a map scale of 1:12000.
If the menu entry is in two parts separated by a space
(such as "1 mi"), the first part of the entry is inter-
preted as a ground dimension in miles.
(This portion of the script can be easily
modified to accept dimensions in kilo-
meters or other distance units.) The
script then performs the necessary cal-
culations and sets the new map scale
for the View window.

The predefined macro script variable
MenuChoice$ is used to represent the
user's selection from the macro script
menu button. For numeric input, this
string must be converted to a numeric
value using the StrToNum() func-
tion.

More about the Zoom to Scale macro script is available in an online document at

http://www.microimages.com/relnotes/v64/zoomto.pdf

STEPS
run Display / Spatial
Data
click the Open
icon button on
the Display toolbar and
choose Open Group
from the dropdown
menu
navigate to the SML

directory and select
GROUPZOOMTO from the
VIEWSHED Project File
use the installed Zoom
to Scale icon button on
the View window to
vary the zoom
choose Options /
Customize / Macro
Scripts from the View
window
use the Properties and
Edit icon buttons to
examine the settings
and script
close the group

set up scale menu choices
that are most appropriate
for your spatial data.

page 46

Spatial Manipulation Language

Sample Macro Script: Snapshot
The Snapshot script is a simple example of a macro
script that processes data from a View window and
launches an external application. The script captures
a screen snapshot of the view window and exports it
to the image file format you have chosen from the
script button's dropdown menu. The script then
launches the application program that you have pre-
viously registered with your operating system to open
that file type.

The Snapshot script has been
written to create specific file for-
mats: JPEG, PNG, BMP, PCX, GIF,
TIFF, and ASCII files with either
TXT or DOC file extensions.
When you add this macro script
to a View window, you must set
up choices for the script button
menu from this set of formats.
The text for each menu entry
must exactly match the charac-
ter string expected by the script,
including case (for example,
JPEG rather than Jpeg).

The script initially saves the snapshot as a tempo-
rary color composite raster object. The bit depth of
the composite is determined by your computer's dis-
play settings. The script segment for each file format
performs a color conversion to the color depth ap-

propriate for that format prior to export.
The output file is automatically saved in
the same directory as the script, then the
file's associated application is launched.
These operations make use of a class vari-
able _context, which specifies the
internal context information for the script.
Class member _context.ScriptDir
specifies the directory in which the script
is found.

Saved snapshot of View
window with raster
background and several
vector overlays.

page 47

Spatial Manipulation Language

Tool Script icon buttons
appear to the left of any
Macro Script icon buttons on
the View window toolbar.

Tool Script Templates
Tool scripts can be run from an icon button on the
View window toolbar or from the Tools menu. To
add a tool script, choose Options / Customize / Tool
Scripts from the View window in any TNT process
that has a View window. Making this selection opens
the Customize Tool Scripts window, which is nearly
identical to the Customize Macro
Scripts window discussed previ-
ously.

To create a new tool script, click
on the New icon button to open
the Query Editor window, which
shows the tool script template.
The template lists a number of
predefined symbols and values
that you can use in any tool script.
The predefined values include the
X and Y coordinates of the screen
cursor within the view (in pixels)
and values that record mouse but-
ton actions.

Additionally, the tool script tem-
plate includes skeletal definitions
of procedures likely to be used in
a tool script. These include pro-
cedures used the first time a tool is activated; when
the tool is destroyed; when the tool is activated and
deactivated; when the tool is suspended (during re-
draw) and resumed (after redraw); when the left, right,
or middle mouse button is pressed or released;
when the cursor moves without a button press;
when the cursor moves with a button press; when
the cursor enters or leaves the View window; and
when the user presses a key. To create your
script, remove the comment characters (#) to the
left of each procedure definition you need and
add code to specify the desired action to be car-
ried out by that procedure.

A number of class and
numeric variables are
predefined and available for
immediate use in tool
scripts.

tool script buttons

macro script buttons

page 48

Spatial Manipulation Language

The POINTSEL script is one of a number of sample tool scripts that are
provided with the TNT products in the TOOLSCR subdirectory of the SCRIPTS

directory. Other sample tool scripts in this directory are described on the
following pages. You can use components from any or all of these scripts
to create the custom tool you need for your specialized application.

The point selection script (POINTSEL.SML) illustrates
how to set up a tool script that lets the user interac-
tively select elements from a vector object in the
View window. In this case the script selects the clos-
est point element when the left mouse button is
pressed; this action is controlled by the definition
for the OnLeftButtonPress() procedure. This simple
script merely selects the point, but the button press
procedure could be expanded to use the selected
point for further processing, such as writing the map
coordinates of each point to an external file.

Because a toolscript is executed interactively from a
View window, all processing is carried out by script
procedures executed by mouse actions or by ac-
tions carried out in dialog windows created by the

script. The definitions you pro-
vide for the predefined procedure
names can call other functions
and procedures that you define
elsewhere in the tool script. In
the point selection script, for ex-
ample, the OnLeftButtonPress()
procedure calls a user-defined
checkLayer() function that checks
to make sure that the active group
contains a layer, and that the layer
is a vector object. The OnInitialize
procedure also calls a procedure
cbGroup() to identify the active
group in a multigroup layout. This
code generalizes the tool script for
use in either a group view or lay-
out view window.

Sample Tool Script: Select Point

STEPS
click the Open
icon button on
the Display toolbar and
choose Open Group
choose TOOLGROUP from
the TOOLS Project File in
the SML directory
press the Select
Point toolscript
icon button on the
View window toolbar
click [OK] in the
message window, then
left-click near a point in
the View to select it

NOTE: the next three
exercises let you use tool
scripts that were saved
with a Display Group.

page 49

Spatial Manipulation Language

Sample Tool Script: Select Element

Consult the Tutorial booklet Building
Dialogs in SML for information on
creating custom dialog windows.

The element selection script (ELEMSEL.SML) allows
the user to select point, line, or polygon elements
from a vector object in the View window. The selec-
tion mode is set using radio buttons on a dialog
created and opened by the script. The user chooses
whether a left-click of the mouse in the view selects
the closest point, closest line, or enclosing poly-
gon. The script merely selects the element, but the
button press procedure could be expanded to ap-
ply further processing to or using the element.

Since a tool script creates a custom interative tool
on the View window's toolbar, you can switch back
and forth between the custom tool and other inter-
active graphic tools, such as the Zoom Box. To
deal with these potential switches, tool scripts in-
clude prenamed OnInitialize() and OnActivate()
procedures. The OnInitialize() procedure is called
only the first time the tool is activated in a viewing
session; if the script uses a custom dialog, it should
be defined within this procedure (but not opened).
The OnActivate() procedure is called each time the
tool is activated, so the code to open
the dialog window should be part of
this procedure definition.

Because tool scripts use predefined
variable and function names that are
automatically recognized by the TNT
Display process (but only in that
context), script syntax should be
checked only in the Query Editor
window opened from the Customize
Tool Scripts. The main SML editor
window will return syntax errors from
valid tool scripts.

STEPS
press the Select
Element tool script icon
button on the View
window toolbar
on the Select Element
window that appears,
use the radio buttons to
choose which type of
element to select

left-click in the View
window to select an
element

page 50

Spatial Manipulation Language

STEPS
press the Line by
Attribute tool script icon
button on the View
window tool bar
click [OK] in the
message window, then
left-click in the View
window to select a line
element; all lines of the
same type are also
selected

Modify and Extend Tool Scripts I

All lines representing railroads selected by
one mouse click next to one of the lines.

The easiest way to develop a new tool script is to
find a similar existing script (your own or one of the
sample scripts described here) and modify and ex-
tend it. That's what we have done to create the tool
script you use in this exercise. Script TLINBYATT.SML

selects the line closest your mouse click, then high-
lights all lines that have the same attribute. This
script was created by modifying the POINTSEL.SML

tool script you used previously.

The main modifications required were in the defini-
tion of the OnLeftButtonPress() procedure, the code

carried out when you press the
left mouse button. This pro-
cedure is excerpted from each
script on the following page.
The procedure was first modi-
fied to find the closest line
rather than the closest point,
then to get the attribute value
for that line from a particular
database field and store it as a
string variable. The new pro-
cedure then loops through all
lines in the object to check their
value for that attribute, stores
the element numbers of match-
ing lines in an array, then uses
the array to highlight all of the
matching lines in the View win-
dow. The procedure could be
modified further to check ad-

ditional attribute criteria, to extract the selected lines,
or apply other processing.

While POINTSEL.SML is generic, and will work with
any vector object containing point elements,
TLINBYATT.SML is tailored for a specific type of vector
data: it works with any vector object imported from
the U.S. Census Bureau's TIGER line files.

close the Display Group
when you have
completed this exercise

page 51

Spatial Manipulation Language

proc OnLeftButtonPress () {
If the selected layer is not valid, don't do anything.
if (checkLayer()) {

Set local variables
local class POINT2D point;
local numeric elementNum;
local string att$;
local numeric line;
local array numeric elemnums[0]; # array to hold element numbers of lines matching target attribute
local numeric count = 0;

Check point.
point.x = PointerX;
point.y = PointerY;

point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, vectorLayer.Projection, 1));

elementNum = FindClosestLine(targetVector, point.x, point.y, GetLastUsedGeorefObject(targetVector));

if (elementNum > 0)
att$ = targetVector.line[elementNum].Class_Codes.CFCC$; # get attribute value of line

for line = 1 to NumVectorLines(targetVector) { # check attributes of all lines
if (targetVector.line[line].Class_Codes.CFCC$ == att$) {

count += 1; # if match, increase the array size
ResizeArrayPreserve(elemnums, count); # and add element number to it.
elemnums[count] = line;
}

}
vectorLayer.Line.HighlightMultiple(count, elemnums); # highlight all lines with target attribute

}
} # end of OnLeftButtonPress

proc OnLeftButtonPress () {
If the selected layer is not valid, don't do anything.
if (checkLayer()) {

Set local variables
local class POINT2D point;
local numeric elementNum;

Check point.
point.x = PointerX;
point.y = PointerY;

point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, vectorLayer.Projection, 1));

elementNum = FindClosestPoint(targetVector, point.x, point.y, GetLastUsedGeorefObject(targetVector));

if (elementNum > 0)
vectorLayer.Point.HighlightSingle(elementNum); # highlight single point

}
} # end of OnLeftButtonPress

Modify and Extend Tool Scripts II
Excerpt from POINTSEL.SML

Excerpt from TLINBYATT.SML

Procedure in POINTSEL.SML that is executed when
the left mouse button is pressed. Lines in red
needed to be modified to create the line
selection script, and some lines were added.

Procedure in TLINBYATT.SML that is executed when
the left mouse button is pressed. Lines in blue
were added and lines in red were modified to
create the line selection script.

page 52

Spatial Manipulation Language

Sample Tool Script: Raster Profile
The Raster Profile tool script (RASTPROF.SML) provides
a line tool that records and plots a profile of the ras-

ter cell values along a line drawn by the user.
The target raster for the profile must be the
active layer in the view, and x-y positions
for the values are recorded in raster coordi-
nates (column and line number). Although
the profile plot is the end result in this ex-
ample, the script can be modified to convert
positions to map coordinates, apply addi-

tional processing to the profile values, or write them
out to a text file.

A portion of the OnInitialize() procedure in the script
invokes a standard interactive line tool:

tool = ViewCreateLineTool(View);
ToolAddCallback(tool.ApplyCallback,

cbToolApply);

(The variable tool was previously declared as a
member of class LineTool.) The procedure
cbToolApply(), which acquires the profile, is

called when the tool is applied
by a right-mouse-button press.
This linkage is set up by the sec-
ond statement in the excerpt
above, which adds the proce-
dure name to the tool's
ApplyCallback list. This struc-
ture dispenses with the need for
a separate OnRightButtonPush
procedure.

The script also demonstrates
how the result of an action can
be shown graphically in a win-
dow created by the script. The
code that draws the graph axes,
labels, and profile is contained
in the procedure cbRedraw()
defined in the script.

page 53

Spatial Manipulation Language

Sample Tool Script: Area Statistics

More about the Area Statistics tool script is available in an online document at

http://www.microimages.com/relnotes/v64/polystats.pdf

The Area Statistics tool script (REGSTATS.SML) shows
how you can create a custom tool to let the user draw
a polygon in the view window, convert the polygon
to a region, and use the region to operate on another
object. In this example, the region is used for the
simple task of extracting statistics from a raster layer
in the view. But the script could be modified to per-
form many other functions, such as creating a mask
raster or extracting elements from a vector object.
The region operations are not restricted to layers in
the view; you can operate on any georeferenced ob-
jects that overlap the defined region.

This script operates on a raster object that is the ac-
tive layer in the view. In the example shown here,
the polygon is drawn on an image layer overlying
the active layer, which contains an elevation raster.
Using the region defined by the polygon tool, the
script computes the number of cells, number of null
cells, minimum, maximum, mean and standard de-
viation of the included raster values, and the area,
perimeter, centroid location, and surface area of the
region. (Statistics can be com-
puted for any type of grayscale
or binary raster, but not for com-
posite rasters or RGB raster
layers.) The statistics are shown
in a Region Statistics dialog win-
dow created by the script. The
script can convert distance and
area values to the units selected
from option menus on the win-
dow. The statistics can also be
saved to a text file.

page 54

Spatial Manipulation Language

Sample Tool Script: Region Statistics
The Region Statistics tool script (REGSTATP.SML)
demonstrates the design for a script that lets
the user select polygons from the view window,
creates a region from the selected polygons, and
uses the resulting region to perform an action
on another object. The example task for this
script is the same as for the Area Statistics tool
script: compute statistics from a raster layer in
the view. Like that script, however, you could
rewrite the cbToolApply() procedure to per-
form different types of operations on other
objects.

This script lets you select one or more poly-
gons from the top layer in the view (and checks to
make sure that that layer is a vector object with poly-
gons). Statistics are computed for the bottom layer
in the view; the script checks to make sure that that
layer is a grayscale or binary raster object. The Re-
gion Statistics window created by the script is similar
to the one used by the Area Statistics script, but
includes push-buttons at the top that let the user

indicate whether the se-
lected polygon should be
added to or subtracted from
the region, and a button to
clear the region.

The Region Statistics script
invokes a standard point
tool with predefined mouse
button actions. A left but-
ton press places the point
tool, and a right button press
selects the enclosing poly-
gon.

More about the Region Statistics tool script is available in an online document at

http://www.microimages.com/relnotes/v64/regionstatistics.pdf

page 55

Spatial Manipulation Language

The ViewMarks tool script (VPTOOL.SML) allows you
to record a list of position markers for the View win-
dow. A ViewMark records the map coordinates of
the current view center (in latitude/longitude) and
the map scale. Once the list is created, you can
select a ViewMark and recenter the View window on
that location at the designated scale. ViewMarks
are particularly useful for layouts that cover a large
geographic area, especially when the layout uses
limited map scale visibility to add and remove layers
as you zoom in and out.

The ViewMarks script creates a
Viewpoint List dialog window
that provides an interactive list
as well as buttons used to ini-
tiate script actions; there is no
graphic tool created by the
script. This dialog is created by
the OnInitialize() function. The
icon buttons on the window let
you add or remove ViewMarks
from the list and zoom to the se-
lected mark. Other push buttons
let you save the list to a text file,
open an existing viewpoint list
file, create a new list, or close
the window. Each of these but-
tons calls a separate function
or procedure defined in the tool script.

When you add a ViewMark, a prompt window opens
to let you name the mark. (The default name is the
zoom level and coordinate position). The ViewMark
names are stored in a list widget (class XmList). The
x-coordinate, y-coordinate, and scale values are
stored in separate numeric arrays.

VPTOOL.SML lets you pick a
viewpoint from the Viewpoint
List to center the view at that
location and scale.

More about the ViewMarks tool script is available in an online document at

http://www.microimages.com/relnotes/v64/viewmarks.pdf

Sample Tool Script: ViewMarks

page 56

Spatial Manipulation Language

Sample Tool Script: Find Streets
The Find Streets tool script (STREETS.SML) illustrates
how a script can access database information and
perform specialized selection tasks. The script uses
a street name entered by the user to locate and high-
light vector lines representing the street. The user
may enter all or part of a street name, and the tool

script displays a list of all
streets containing that search
text. When the user picks a
street from the list, the script
redraws the view at 1:30000

with all lines that form parts of the street highlighted
and centered in the View. If all the street's lines do
not fit in the View at 1:30000, the View is redrawn
at a scale that fully contains the lines.

The script uses the cur-
rent highlight colors for
selected and active ele-
ments (Options / Colors).
For this tool, the selected
street will have a uniform
appearance if both the
active and selected colors
are the same (yellow in
the window illustration).

The name of the town
and the zip code are also

provided in the list of streets found. The script as-
sumes there are not two separate streets in the same
zip code with the same name. If, however, it turns
out that the search name belongs to two different
streets in the same zip code (one Main Street, the
other Main Drive, for example), only the first en-
countered is listed but both are highlighted when that
selection is made.

More about the Find Streets tool script is available in an online document at

http://www.microimages.com/relnotes/v64/findstreets.pdf

STREETS.SML is coded to work
with specific geodata from a
sample atlas of France. You
must modify the script
before it will work with other
geodata and attributes.

The user enters a street
name and the tool script
finds it on the map.

page 57

Spatial Manipulation Language

Sample Tool Script: Flow Path
The Flow Path tool script shows how custom analy-
sis procedures can be performed on layers in the cur-
rent view using an SML Tool Script. The script uses
SML watershed functions that operate on an eleva-
tion raster (DEM) that must be the first layer in the
View window.

When the user launches the script, it first executes
watershed functions to create a depressionless ver-
sion of the DEM and a complete set of vector flow
paths. These derived features are required by subse-
quent script steps; they are stored as temporary ob-
jects and are not displayed in the view. The script
then opens a FlowPath and
Buffer Zone window and cre-
ates a graphic tool that allows
the user to place one or more
watershed seed points on the
DEM or on an overlying im-
age layer. Toggle buttons on
the window enable the user
to choose to compute and dis-
play:

• the upstream basin (area with flow toward the
seed point),

• the flow path downstream, and
• a buffer zone around the flow path.

If the user intends seed points to fall along a stream
course, they can turn on the Move Seed Point to Flow
Path toggle button. Each seed point is then moved
to the nearest precomputed flow path line before the
new flow path and basin are computed. The user
can place new seed points, repeat the analysis as
many times as desired, and save the computed vec-
tor objects.

More about the Flow Path tool script is available in an online document at

http://www.microimages.com/relnotes/v64/flowpath.pdf

The script also creates and
displays (in red) a vector
layer outlining the extents of
the DEM. If an overlying
image layer is larger than the
DEM, the user can use the
extents box to guide
placement of the seed
points. The extents box is
also used to automatically
clip buffer zones computed
from flow paths that intersect
the DEM boundary.

page 58

Spatial Manipulation Language

Sample Tool Script: Run Browser
The Run Browser tool script (URLS.SML) is an example
of a custom script that launches an external applica-
tion program. The script allows a user to set up and
use links between spatial data in a view window and
sites on the World Wide Web. Links can be made to
cell values in a raster, or to specific attribute values

associated with vector ele-
ments. One or more URLs can
be entered for each value. Once
links are set up, the user can
select an element or cell in the
view window, choose the de-
sired URL, then have the script

launch the default web browser, which then goes to
the desired web address.

To use the tool, left-click on the polygon or cell de-
sired, then right-click to confirm the select tool is
correctly positioned. The URL(s) associated with
the selected feature appear in the Select a URL win-
dow that is created by the script. Choose the de-

sired URL, then click on the
Launch Browser button.

The associations between
URLs and element attrib-
utes or cell values are
stored in a separate text file,
specified in the sample
script as URL.TXT. The text
file lists the name and de-
scription for each object
with URL links. The asso-
ciations in this sample tool

script refer specifically to CB_DATA / CB_SOILS.RVC /
CBSOILS_LITE, or BEREA / BERCRPCL.RVC / CLS_MAXLIKE.

More about the Run Browser tool script is available in an online document at

http://www.microimages.com/relnotes/v64/runbrowser.pdf

Turn on the Add button to
set up links, and the Scan
button to use existing links.
To use links in Scan mode,
select your target URL and
click [Launch Browser].

page 59

Spatial Manipulation Language

Sample Tool Script: Command Parser

More about the Command Parser tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fixcolor.pdf

Several of the tool scripts discussed previously cre-
ate a control window that allows users to execute
script actions using push buttons or other graphi-
cal interface controls. The Command Parser tool
script (COMPAR.SML) demonstrates a script design that
creates a "command line" interface for executing
script actions. The Command Parser window cre-
ated by the script includes a text field in which the
user enters predefined text commands. A procedure
named ParseCommand() associates
each command string with a particular
function or procedure defined else-
where in the script.

This sample script was designed as a com-
mand-line equivalent to the graphical Color
Palette Editor in TNTmips. It allows a user
to create or edit a color palette by assigning
colors to particular cell values or cell value
ranges in a raster. The script uses a very small
set of commands (each one or two characters
long), some of which are accompanied by nu-
meric parameters. For example, the command
string "pr,3,20,1" paints a range of cell values
from 3 to 20 with the color specified by color
index number 1. The index numbers and cor-
responding color values (R, G, B, and
Transparency values) are defined in a text
file, which for script access must be read into
an array using the command "b".

Although a graphical interface is easy to learn, ex-
perienced users can execute repetitive tasks more
quickly using a command-line interface. Tasks that
might require several mouse actions in a graphical
window can be executed using a single short com-
mand string.

Commands are included to
create a color text file from
a color palette in a project
file, or to create a color
palette from a text file.

The Command Parser
window created by the script
includes a field for entering
command strings and one
that displays process status
messages. An icon button
opens a Help dialog
window.

page 60

Spatial Manipulation Language

Sample Tool Script: FRAGSTATS
If a tool script is installed for
use with any 2D Group, it
can be run from any view
window in any TNT
process. So you can run
the Automatic Classification
process and immediately
run the Fragstats tool script
on part of the Class raster
that is shown in the Class-
ification View window.

More about the Fragstats tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fragstats.pdf

The FRAGSTATS tool script (FRAGTOOL.SML) is an
example of a script that extracts spatial data from a
raster layer in the view and passes the data to an ex-
ternal application program for processing. The
FRAGSTATS program was developed by landscape
ecologists to compute a variety of statistics about
the spatial patterns of areas (patches) representing
different ecological habitat classes. The appropriate

input for the tool is there-
fore a class raster, one
that has a unique integer
value assigned to cells of
each category or class.
You can create class ras-
ters from multispectral
imagery using the Auto-
matic Classification or
Feature Mapping pro-
cesses in TNTmips.

The FRAGSTATS tool script provides a polygon
tool that lets the user select an area (created as a
temporary region object) for calculating the land-
scape statistics. When the tool is applied, the script
writes the class raster to a text file for use by the
FRAGSTATS program. Cells outside the region of
interest are given negative class values in the text
file, which is the FRAGSTATS convention for iden-
tifying cells that are outside the "landscape
boundary". The script then launches the
FRAGSTATS program in a DOS shell. FRAGSTATS
identifies homogeneous patches and computes sta-
tistics for the individual patches and for entire
classes. The statistics are saved in a series of text
files.

A separate script for running
FRAGSTATS from the SML
process interface is also
available. FRAGSTAT.SML
can be found in the SCRIPTS /
GENERAL directory. This
script requires that you
provide both the class
raster and a binary mask
raster to define the area of
interest.

page 61

Spatial Manipulation Language

page 62

Spatial Manipulation Language

page 63

Spatial Manipulation Language

Advanced Software for Geospatial Analysis S
M
L

S
C
R
I
P
T
S

Voice: (402)477-9554
FAX: (402)477-9559

MicroImages, Inc.

email: info@microimages.com
Internet: www.microimages.com

11th Floor – Sharp Tower
206 South 13th Street
Lincoln, Nebraska 68508-2010 USA

MicroImages, Inc. publishes a complete line of professional software for advanced geospatial
data visualization, analysis, and publishing. Contact us or visit our web site for detailed
product information.

TNTmips TNTmips is a professional system for fully integrated GIS, image analysis, CAD,
TIN, desktop cartography, and geospatial database management.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector,
image, CAD, TIN, and relational database project materials in a wide variety of formats.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD-
ROM at low cost. TNTatlas CDs can be used on any popular computing platform.

TNTserver TNTserver lets you publish TNTatlases on the Internet or on your intranet.
Navigate through geodata atlases with your web browser and the TNTclient Java applet.

TNTlite TNTlite is a free version of TNTmips for students and professionals with small
projects. You can download TNTlite from MicroImages’ web site, or you can order
TNTlite on CD-ROM.

Index
APPLIDAT................................4,40-42
array... .18
assignment statement..................................6
CAD objects..26
database objects.........................28,30,31
debugger. .21
classes...14-16
custom menu..22
encryption..39
expressions...9
functions..10-12
GeoFormula.....................................38
impor t . 36
including scripts.....................................20
loops (for, for each, while)........................13
Macro Script..................................4,43-46

matrix..18
movie script....................................34,35
preprocessor commands....................20
procedures..12
raster objects.....................................23,29
region objects...................................27,29
str ingl is t .18
syntax.... .6,7
SML layer script.................................4,37
TIN objects...26
Tool Script................................4,43,47-60
toolbars..22
user input...17
variables...8
vector objects..........................24,25,39,31
view window..................................32,33

	Before Getting Started
	SML in the TNT Products
	Be Creative with SML
	Run VIEWSHED.SML
	Fundamentals of SML Syntax
	Checking Syntax
	Variables
	Expressions and Statements
	Built-In Functions
	Online Function Help
	User-Defined Functions and Procedures
	Loops and Branches
	Using Classes
	Member Inheritance and Type Checking
	Class Methods
	User Input
	Using Arrays, Matrices, and Stringlists

	Script Development and Editing
	Preprocessor Commands and Debugging
	SML Debugger and Script Timing
	Toolbars and the SML Custom Menu
	Raster Objects
	Vector Objects
	Using the Vector Toolkit
	CAD and TIN Objects
	Region Objects
	Database Objects
	Converting Objects
	Sample Script: Extract Polygons
	Sample Script: Network Routing
	Creating and Opening a View Window
	Coordinate Systems in Views

	Movie Generation Scripts
	3D Simulation Scripts

	Batch Import with SML
	SML Layer in Display
	SML and GeoFormulas
	Script Objects and Encryption
	APPLIDATS
	Providing APPLIDAT Instructions
	BIOMASS2 APPLIDAT

	Tool Scripts and Macro Scripts
	Macro Script Setup
	Sample Macro Script: Zoom to Scale
	Sample Macro Script: Snapshot
	Tool Script Templates
	Sample Tool Script: Select Point
	Sample Tool Script: Select Element
	Modify and Extend Tool Scripts I
	Modify and Extend Tool Scripts II
	Sample Tool Script: Raster Profile
	Sample Tool Script: Area Statistics
	Sample Tool Script: Region Statistics
	Sample Tool Script: ViewMarks
	Sample Tool Script: Find Streets
	Sample Tool Script: Flow Path
	Sample Tool Script: Run Browser
	Sample Tool Script: Command Parser
	Sample Tool Script: FRAGSTATS

	Blank page
	Blank page
	Blank page
	Index and MicroImages Product Information

