| Tutorlal

' ertlng Scnpts
Wlth SI\/IL

TNTmlps®
Sl o TNTedltTM
. Fawguui®] AINTview®

Before Getting Started

This booklet introduces the fundamentals of creating scripts in the Spatial Ma-
nipulation Language (SML) in the TNT products. The exercises in this booklet
introduce you to basic SML concepts and scripting conventions and provide
many examples of powerful scripts for custom manipulations of the spatial data
objects in your TNT Project Files.

Prerequisite Skills This booklet assumes that you have completed the exercises
in the Displaying Geospatial Data and Navigating tutorial booklets. Please con-
sult those booklets and the TNTmips Reference Manual for any review of essen-
tial skills and basic techniques you need. This booklet also assumes that you
have at least a fundamental knowledge of one or more programming languages
such as C, BASIC, or Pascal. You can begin to use SML even if you have no
programming background, but SML is a powerful language and yields the most
benefit in the hands of a good programmer.

Sample Data The exercises in this booklet use sample data distributed with the
TNT products in the pata and scripTs directories. If you do not have access to a
TNT products CD, you can download the data from the Microlmages web site.
This booklet uses scripts in the smL subdirectory of bata, and in the macrscr and
TooLscr subdirectories in the scripTs directory. You will also need files in the
CB_DATA, SF_DATA, SURFMODL, and EbITRAST subdirectories of pata. Make a read-
write copy of the sample data on your hard drive so changes can be saved when
you use these objects.

More Documentation This booklet is intended only as an introduction to the
Spatial Manipulation Language. Consult the TNT reference manual, and espe-
cially the online SML Reference for more information.

TNTmips and TNTIite® TNTmips comes in two versions: the professional ver-
sion and the free TNTIite version. This booklet refers to both versions as
“TNTmips.” If you did not purchase the professional version (which requires a
software license key), TNTmips operates in TNTIite mode, which limits the size of
your project materials and does not allow export. All exercises in this booklet can
be completed in TNTlite using the sample geodata provided.

Randall B. Smith, Ph.D. and Keith Ghormley, 15 October 2003
©Microlmages, Inc., 1997

It may be difficult to identify the important points in some illustrations without a
color copy of this booklet. You can print or read this booklet in color from
Microlmages’ web site. The web site is also your source for the newest
tutorial booklets on other topics. You can download an installation guide,
sample data, and the latest version of TNTIite:
http://www.microimages.com

page 2

Spatial Manipulation Language

SML in the TNT Products

The Spatial Manipulation Language (SML) is the
general-purpose scripting language used through-
out the TNT products. If you have written a selec-
tion query, you have already used basic elements of
SML. Butyou can also use SML to design custom
processes and add unique capabilities to the TNT
products. SML has evolved as the capabilities of
the TNT products have grown. Fromits origins as a
scripting language for custom processing of raster
images, SML can now process any type of spatial
object and associated database information. You
can use SML scripts to operate on the geospatial
data objects in Project Files, on objects displayed in
a spatial view, or even to create a virtual display
layer inaview.

You can create and use custom SML scripts in
TNTmips, TNTedit, or TNTview. Scripts prepared
for use in these products can also be distributed
and used in TNTatlas and TNTatlas for Windows.
SML scripts are platform-independent; they run with-
out modification on any computer that runs
TNTmips.

SML is an interpreted scripting language. This
means that your computer evaluates and executes
script statements one at a time. Interpreted languages
are slower than compiled languages (like C or Pas-
cal) in which the program code is pre-evaluated to
create a fast, machine-read-
able version. On the other
hand, SML has a simpler
structure and syntax than compiled lan-
guages, making the task of writing useful
scripts much easier. And SML
provides access to many of
the compiled functions and

= THTnips 6.5 Serial# 0080

SHL

Surface Hod

= THTedit 6.2

Serial# ~7I7

GeoFornula, ..

STEPS

M select Process / SML /
Edit Script... from the
TNTmips main menu

The exercises on pp. 4-18
introduce basic SML
concepts and scripting
conventions. Pages 19-27
illustrate specific program
techniques for different types
of geodata objects. The
remainder of the book
introduces advanced SML
development techniques
and script types, such as
movie scripts, APPLIDATSs,
Macro Scripts, and Tool
Scripts.

Refer to the tutorial booklets
Building and Using
Queries, Using
CartoScripts, and Using
Geospatial Formulas for
information about these
particular script types.

SML in TNTmips

Display Edit Processl Support Toolbars Custon Help

e ——

F

Run...
Edit Script...

eling...

Fily

processes found in
TNTmips, which can
speed script execution
for complex operations.

SML in TNTview
i 18] a) ‘”HE'

page 3

Spatial Manipulation Language

Be Creative with SML

SML is fully integrated into TNTmips and the other TNT products. You can
create and use several types of SML scripts that provide different levels of
interactivity with your geospatial data and other TNT processes. We will examine
examples of all of the following script types later in this booklet:

SML Process Script: Use the SML process to create custom scripts to uniquely
process your geospatial data. You can use an SML process script to apply an
operation not found in the standard TNT processes or to automate a sequence of
steps involving standard processes or even external programs. SML process
scripts can access and create data in TNT Project Files or in external file formats.
They can also create dialog windows to allow interactive setting of program
options and even views of the input or output data.

Macro Script: Use a macro script to implement custom commands that operate on
the geospatial data in a View window. A macro script can change the view of the
data, operate on data in the View, or start an external program and provide it with
data from and about the layers in the View. You can install a macro script so that
it is available in any TNT View window or restrict its use to a particular saved
group or layout. You can access a macro script from the View window using an
icon button and from the Macros menu. Program options can be provided on a
dropdown menu activated from the script's icon button and Macros menu entry.

Tool Script: Use a tool script to provide a unique interactive graphic tool to select
data in a view window and apply custom processing. Atool script can provide a
point, line, or polygon tool to designate the portion of the data to be processed.
It can also create a dialog window to provide controls for the tool, the process, or
to show the results of the processing. The tool script template provides skeletal
function definitions that you can fill in to define the exact operations you need.
You can activate a tool script from the View window using an icon button or from
the Tools menu.

SML Layer Script: Use an SML Layer script to create a separate layer in a spatial
display view with the Add SML display option. You can use such a script to
render a custom cartographic element such as a magnetic declination symbol.

APPLIDAT: You can use SML to create turnkey geospatial applications for users
of TNTview or TNTmips. An APPLIDAT (APPLIcation plus DATa) bundles an
SML script (or scripts) with the geospatial data to be processed. Data and script
are loaded together automatically when each script is run, so no file navigation is
required. Launch each component script from an icon button on the APPLIDAT's
toolbar, which can also include a button for instructions. An instruction set is
easy to create because you can use any editor that supports the HTML format.

page 4

Spatial Manipulation Language

Run VIEWSHED.SML

The viewsHED.sML script is an example of an SML
process script. The script and its sample data in
VIEWSHED.RvC are contained on the TNT products
CD-ROM and are also available on the Microlmages
web site. The script creates an output binary raster
object that shows which parts of its input elevation
surface are visible from the stream of points along
the input line element. Many applications that deal
with line-of-sight surface characteristics can use the
techniques illustrated in this script.

Open the viEwsHED.sML script in the Spatial Manipu-
lation Language window (SML editor) by following
the steps listed. Before you run the script, scroll
through it and survey its contents. Unless you are
unfamiliar with a programming language such as C
or BASIC, you should recognize statement forms
and programming structures.

Note that the hardest work of the script is done with
calls to various SML functions, such as
Rast er ToBi nar yVi ewshed(). Microlmages is
constantly adding new functions and classes to
SML. Being aware of what functions and
classes are available and understanding
what they do is essential to making the
most of SML. In addition to using the
built-in SML functions, you can write
your own interpreted SML functions and
procedures, import classes written in Vi-
sual Basic or C, or invoke external pro-
grams from within SML scripts.

VIEWSHED.SML produces a binary raster (1's
shown here in yellow) that indicates the
areas visible on an elevation surface
(shown here in relief shading) from a
stream of points along input vector line
elements (shown here in cyan). Thus if
the line elements represent roads, then
the yellow areas define the vistas
available to travelers on that road.

STEPS

M in the Spatial Manipula-
tion Language window
choose File / Open /
*.SML File and select
VIEWSHED.sML from the smL
directory

M scroll through the script
for a first look at SML

M click [Run...] at the
bottom of the window

M when prompted for the
input raster "RIN", select
pem from the viEwsHED
Project File in the smL
directory

M for the input vector "v",
select vpath from the
VIEWSHED Project File

M select a new Project File
and object for the output
raster "rRout"

M use the TNTmips Display
process to view three
layers: VIEWSHED / DEM,
your new output raster,
and VIEWSHED / VPATH

page 5

Spatial Manipulation Language

Fundamentals of SML Syntax

STEPS

M clear the SML window
by selecting New from
the File menu

M type in the script shown
in the illustration below

M click [Run] to execute
the script

The Spatial Manipulation
Language window
(hereafter referred to as
the "SML window") is a
simple text editor that
provides access to function
lists and syntax checking.

File

= Spatial Hanipulation Language MmEl

Edit Insert Syntax

An SML script can be anything from a single state-
ment to a long structured program with nested logical
branching constructs. To illustrate some of the ba-
sic elements of SML syntax, type in the sample script
illustrated below. The script consists of four lines,
with each line containing one program statement.
The first statement declares a string variable named
stringvar$. The second statement calls a predefined
function that erases the contents of the Console
Window. (This function requires no parameters,
therefore the parentheses following the function
name are empty.) The third statement assigns the
string "Hello" to the previously-declared variable
stringvar$. The final statement calls a predefined
print function to print the value of
stringvar$ to the Console Window.

string stringvard:
clear{};

stringvary = "Hello":
print{ stringvar® }:

felp - Spaces and tabs in your script are ig-
nored when the script is interpreted by

SML. Feel free to use spaces and in-

dents to improve the clarity and

_{ readability of your scripts. For example,

|

this script leaves spaces next to the pa-

ITine to e:-:ecl

= Console Hindow

operations.

The Console Window
shows the results of print()
and other text input / output

rentheses in the print statement.

Canvel

You will find the basic SML syntax
rules, which are outlined on the follow-
ing pages, to be fairly open and flexible.
For example, most variables are created
when first invoked and need not be de-

Bl

SML supports the use of
various types of variables,
classes, functions, and
keywords, and provides
standard operators for use
in assignment statements
and in mathematical and
logical expressions.

clared before use, and use of the
semicolon (;) to terminate statements is optional. Vio-
lations of the basic SML syntax rules will prevent
your script from running (they are reported as er-
rors), but you can screen such errors first by using
the syntax checker. You should use the syntax
checker frequently as you develop your script.
Check each small portion as you write it. Itis easier
to find and fix errors as you go along rather than
waiting to fix all of the errors in a long complex script.

page 6

Spatial Manipulation Language

Checking Syntax

The Check option on the Syntax menu checks your | STEPS

script for syntax problems. Violations of the basic | ¥ edit the previous script
SML syntax rules, such as missing function param-
eters, misspellings, and unclosed parentheses and
loops, are reported as errors. The syntax checker
cannot detect logical errors such as infinite loops or
incorrect input values.

If the syntax checker finds problems in your script,
the message line at the bottom of the SML window

to remove the closing
parenthesis ") " at the
end of the print
statement

M select Syntax / Check

from the SML window

M click [OK] on the

resulting Message
window

displays an error message and places the cur- |[EE TRt T e Ry (|

sor at the end of the last part of the script that

File

Edit Insert Syntax Help

the checker could correctly interpret. A Mes-
sage window also opens and reports the nature
of the error (if possible) and the line
number. Often the error immediately

= Hessage

string stringwar®:
clear{):

stringvart = "Hello™:
print{ stringvar¥ ;

Syntax error {just before cursor}

precedes the cursor location, but if @ Einongcedolol ssg

Hodule: HELLO.shl PRevision: —-- Line: 4

the error involves nested processing
loops, you may need to search some

o

distance around the cursor to find the problem.

Although the basic syntax rules are adequate for
simple scripts, SML also includes an optional stricter
set of syntax rules to help you ensure correct inter-
pretation of complex, highly-structured scripts:

1. All variables must be declared before they are
used in a statement.

2. Assigned variable values must match the declared
variable type.

3. All statements must end in a semicolon.

Strict syntax rules are checked only when you check
syntax (not when you run the script), and violations

restore the closing
parenthesis to the print
statement

delete the first statement
in the script (the variable
declaration) and the
semicolon from the end
of the last statement

M select Syntax / Check

from the SML window

M click [Close] on the

resulting Script
Warnings window

are reported in a Script Warnings window only [[EE e esie ror s e ey |

when there are no basic syntax errors. The | File

Edit Insert Syntax Help

sample scripts used in this booklet follow SML's [[slears
strict syntax rules, and we encourage you to |lerint< stringvars >

3

followthemin =Script Harnings
your own
SCI’iptS line 3: Yariable stringvar$ used without being declared--assuning ’string’,|

line 10: Hissing “;" at end of statement

page 7

Spatial Manipulation Language

Variables

= 5patial Hanipulation LanguageMmE
File Edit Insert Syntax Help

Variables can be used for string, numeric, logi-
cal, array, class, and object (raster, vector, region,

clear(}:

nuneric len, width, area;
string arealabel® = "Area = ";
len = 53

width = 33

area = len * width;
print{arealabel®, area};

= i
Tine to ext

Run.,..

= Console Hindouw

L

CAD, and TIN) entities. Variables are created
when the script first mentions them. With the
exception of arrays and classes, variables do not
have to be declared ahead of time in basic SML
syntax. Variables follow these conventions:

String: initial character is lowercase; must end
in ‘$’ character if not declared. Values in assign-
ment statements must be enclosed in double or

STEPS

M select File / New to clear

the SML window

type the first three lines

of the script shown

above and press

<Enter> to start a fourth

script line

select Syntax / Check

select Insert / Symbol

and choose Numeric

from the Type menu on

the Insert Symbol

window

select len from the

Numeric variable list and

press [Insert]

M type in the remainder of
the fourth statement

M complete the rest of the
script and click [Run]

)

HE

= Insert Symbol] 3
Type: Huneric _II
area A
ten |
width
il
i

s

Cloze | Insertl Help |

single quotes (single quotes allow multi-line
strings).

Numeric: initial character is lowercase; cannot end
in ‘$’. Values can be integer or decimal.

Object: initial character is uppercase
example: Get | nput Rast er (Rast)

Logical: implemented as numerics where 0 = false,
and all non-zero values = true. You can use either
the logical or numeric values in assignment state-
ments. Thus

done = 0;
if (condition) done = true;
if (done) <statenent>;

Array and Class: You must declare an array or a
class before using it. Enclose an array index in
square brackets:

array numeric numist[10];
num i st[1] 256;
class COLOR red;

You can use the Insert Symbol window (Insert/ Sym-
bol) to insert variables declared or used previously
in the script. Use the Type option menu to choose a
variable type (or Constant) and view the associated
list. Your variable names are added to these lists
when you use the Check Syntax operation or run
the script. Inserting variable names rather than typ-
ing them can cut down on typing errors.

page 8

Spatial Manipulation Language

Expressions and Statements

Expressions are constructs that reduce to some
value. Thus pi”2,5.10, and R[i,j]/100 are all expres-
sions. Expressions can be used on the right side of
assignment statements and as arguments in func-
tion calls.

Statements can be simple or complex. Asimple state-
ment can consist of an assignment, such as
pi * r"2;

Multiple short statements can be place on a single
line if separated by semicolons:
I en 2; wi dt h 5;

area =

Conditional statements have the form
if (<condition>) then <statement>
el se <statenent>;

Note that the <condition> expression must be en-
closed in parentheses. The else clause is optional,
as is the “then”:

if

(<condition>) <statenent>;

A complex statement involves multiple actions on
separate script lines and is bracketed by the key-

words “begin” and “end” in the form
if (condition) begin

= TInsert Operator MmE

+

_ Use Insert / Operator
* to insert standard
‘.:_ operators for math,
~ comparison, assign-
ment, and logical
operations. SML

= operators are similar
- to those available in
Cor BASIC.

=

Operator #

Hodulo {renainder}

Description:

a=xih i
i~ 1

=

Close | Insertl Help |

STEPS

M select File / Open /*.SML
File and select smL/
EXPRESS.SML

M run the script

M decrease the value for
the width variable and
run the script again

i = Spatial Hanipulation Language =3
function(r);
area = pl * ,\2; File Edit Insert Syntax Help
EXPRESS,SHL A
end # czanple script for “"Hriting Scripts with

SML also lets you use braces (“curly
brackets”) instead of spelling out “begin”
and “end”:

len = 50z

shows use of expresszions and conditional

nuneric len, width, area;

area = len * width;

width = 303

conpute area

if (condition) ({ if { area < 200 } then
functi On(r) . print{ "Area is LESS than 200" }:
A ? else i
area = pi * r"2; print{ "Area is HORE than 200" };
} print{ "Adjust length or width" }:
3)
ol []

The comment character (“#”) tells SML to
ignore the rest of the line. If a comment
character is the first character on a line,
SML ignores the whole line. Use com-

Tine to execute SHI

= Console Hindow

Area is HORE than 200
Ad just length or width

Run...

ments liberally to document the script logic for your-
self and others.

page 9

Spatial Manipulation Language

Built-In Functions

STEPS

M clear the SML window
with File / New

M select Insert / Function

M click the Function Group
button and browse the
function library for each
category

=Function Group... MmEE

Display
Display Group
Display Layout
Diszplay Yiew

Db ject Conversion
Popup Dialog
Raster

Raster Classification
Raster Focal
Raster Global
Raster Horphological
Raster Matershed
Region

Resource File

Set

Status

String

Style

Surface Fitting
Systen

TIN

Yector

Yector Hetwork
Yector Toolkit
Hidget

(114 | Cancell Help |

The real power of SML lies in its rich collection of
built-in functions and classes that let you create,
read, process, and write geospatial objects and
subobjects in your TNT Project Files. Standard math
functions are included along with specialized func-
tions for display, interface, and data manipulation.
Microlmages is constantly enhancing and expand-
ing the SML functions to give you more ways to
work with your geospatial data.

Select Insert / Function to open the Insert Function
window, which lets you select functions and see their
usage format specifications. Click the Function
Group button to examine the available functions for
each category. As you scroll through the list of func-
tions, the definition in the lower pane changes to
show the usage of the current function. Click the
Insert button to copy the function into the SML script
window.

Georeference The Insert Function window
2"5 ¢ Expont offers a scrolling list of
e Function Group... [ALL functions in the top pane,
Ini File The Function Group— Im———— . A
Internal p GPSHURSources and a function definition in
Hath button opens a GPSOpen the bottom pane. If you click
Hatrix scrolling list of GP5PortClose .
Pt e 9 X] GPSPar-t0pen [I_nse_rt], SML inserts the
Dhject 'UNCUON categories. highlighted function at the

GPS55ourcelanagerlpen e
GroupAddiapGridiayer CUMSOT position in the SML
GroupAddRaster window.

GPSPortRead A

Read data from a GPS port

GP5PortRead{GP5Port, lastRead}

Hhere:
GPS

Paraneters:
class GPSPort GPSPort
the GPS port to read from
nuneric lastRead {Optional}
Pass 1 to retrieve last read value:

Details and Assumnptions
port was opened with GPSPortOpen

Return Yalue
class GPSData
class GPSData - see class for data ne

] [

=

Close | Insert Details, ..

page 10

Spatial Manipulation Language

The supporting documentation for SML functions
is incorporated into the process. First, the bottom
pane of the Insert Function window gives a simple
definition, showing each argument and its data type
(text in blue). You can click the Insert button to
copy a complete instance of the function into the

SML window.

For more information, click the Details button in the
Insert Function window. SML opens the
Details On; window that gives complete

details, plus (for many functio

ing section of code that shows how the
function works in a sequence of state-
ments. You can click the Insert Sample

button to copy the entire exam
SML window.

Since SML functions are
enhanced from time to time,
the Insert Function window

Online Function Help

STEPS

M select All in the Function
Group text box

scroll to the
GPSPortRead() function
click the Details button
click [Insert Sample]
examine the newly-
inserted script lines in
the SML script window

]
]
]
]

= Insert Function 1 (wE3
Function Grnup...lﬂll

nS) a WOI‘k— GP5PortClose Y
GPSPortOpen

P5PortRead

GP55ourcetanagerOpen

ple into the

GP5PortRead

Read data from a GP5 port

EDetails on: GPYLLTEH
GPS
GPSPortRead
Paraneters:

Read data from a

shows when the current
function was most recently
changed. Watch for modi-
fications that provide op-
tional new capabilities to
functions you have used.

_——“"———‘—

The Create date tells
when the function was
introduced to SML.
The Modify date tells
when the function was
last updated. Some-
times optional
arguments are added
to a function to expand
its capabilities.

GPSPortRead (GPSP

Hhere:
GPS

Paraneters:
class GPSPort)
the GP5S po
nuneric lastR)
Pass 1 to

Details and Assu
port was open|

GP5PortRead(GPSPort, lastRead)

Details and Assunptions

Return Yalue

Create Datef 13-Apr-1938
Hodify DateN18-.Jun-1998
Avai n

class GPSPort GPSPort
the GPS port to read from
nuneric lastRead {0ptional)
Pass 1 to retrieve last read values

port was opened with GPSPortOpen

class GPSData
class GPSData - see class for data nenbe

Indous: Yes

Return I

I e

ass GPSData
class GPSData

Close | Insert | Deteils...l

Create Date: 13-ﬁpr-I§§E
Hodify Date: 18-Jun-1998
Available in SHL for Hindows: Ye

Exanple:

exanple of GPSPortRead{}
% declare class wvariables
class GPSPort gpsport:
class GPSData gpsdatas

clear{}
% open the port

gpsport = GPSPortOpen{™COH1", “HHER", ":4800:3:nom|{

/

: -/
Click the Details
button to see a full
description of the
function's
arguments with an
example of its use.

Click Insert Sample to —™——
copy the entire section

-~

I -

TI‘Insert Sanple |

Help |

of sample code into the
SML window

M close the Details and Insert Function windows
when you have completed this exercise

page 11

Spatial Manipulation Language

User-Defined Functions and Procedures

STEPS

M select File / Open /
* .SML File and open
LARGER.sML from the smL
directory

M run the script

SML allows you to define your own functions and
procedures that you can use to encapsulate sequences
of program steps that must be repeated in several
places in the script. User-defined functions must
return a value, whereas procedures do not. Of course

TRl =] | You must declare a function or a procedure

=
File Edit Insert Syntax Help

before you invoke it, using the form:

larger.snl
nuneric a, b, c, d; =3

func larger { x, y) £
d = 1003
if {x > y} return =;
else return y3
3

clear{};
a=6:b=7:d=2;

¢ = larger{a,b):
llprintf{"c= Xd, d= Zd, x=

#d"rc,d,nd; 7]

L-

func funcname ([parmist])

{ statenent; statenent;

return expr }

proc procnanme ([parmist])
{ statenent; staterment; ... }

Unless declared otherwise, all script variables
are global. This means that your functions
and procedures can use and modify variables

=

=]

Tine to exect

EConzole Hindow

c= 7, d= 100, n=

defined elsewhere in the script. (Any global
array or class variables used in your functions
and procedures must be declared before or in
the function definitions). Inalarge or complex

M select File / Open / script, this global scope of variables may cause un-
*.SML File and open anticipated consequences. To limit the scope of a
E’ngsfozr;w fromthe sw. | variable to a particular function or procedure, you

® run the script must declare the variable as a local variable within

the function definition:
=Spatial Hanipulation Language MmE3
File Edit Insert Syntax Help func funcname ([par m i St]) {
N e Dol £ local nuneric x;
PEre,sh,

nuneric a, b, ¢, d, x:

func larger (%, y > §
local nuneric d = 1003
if {x > y} return x}
else return y;
3

clear{}:
a=6b:bh=7:d=2;

c = larger{a,b};

llprintf{"c= #¥d, d= %d, u= ¥d".c.d.=):

where X is a variable name. The function pa-
rameters are exceptions to this rule; their scope
is automatically limited to the function. Local
variables can have the same names as global
variables elsewhere in the script, though this
is not recommended practice. Inthe examples
4] shown at left, variable x retains the default

=l
Tine to exect

Run,..

S Console Hindow

c= 7, d= 2, &= 0

]
Canvel

value 0 in the main script because the function
parameter x is automatically local. The assign-
ment of value 100 to d in the function

supercedes the value assigned before the func-
tion is called in the main script unless d is also defined
as a local variable in the function.

page 12

Spatial Manipulation Language

Loops

Implied Loops. When SML sees a raster object vari-
able on the left side of an assignment statement, it
executes an implied loop, evaluating the right side
of the statement and assigning the result to each cell
in the left-side raster object:

in R

R=R* scale # nultiplies each cell

For each statements for raster and vector objects
have the forms:

for each Rastvar statenent
for each Rastvar[lin,col] statenent
for each Rastvar in Region statenent

for each vector_elenent[n] in V statenent

In the raster notation, | i n and col indicate the line
number and column number of the "current posi-
tion" in the raster for access within the processing
loop. Inthe vector notation, vector_element can be
"point", "line", "poly", or "node". The [n] is op-
tional and can be omitted. If given, the variable n is
used as the loop counter.

For statements have two forms:

for var=expr to expr statenent
for var=expr to expr step expr statenent

Loops using "for" statements allow a script
to operate on portions of a set of values (ras-
ter cells, array values, element numbers)

File Edit Insert

and Branches

STEPS

M select File / Open and
select wHILEFOR.smL from
the swmL directory

run the script

change the while
condition and run the
script again

change the step value in
the for loop and run the
script again

]
|
]

NOTE: the "for each”
keyword sequence also may
be written as one word:
"foreach". This version of
SML does not support
nested “for each" com-
mands.

The break statement is used
to exit a loop before the loop
might otherwise terminate. It
is often used in a conditional
test inside the loop. The
break statement in this
example prevents division
by zero.

specified by ranges, or to "step" through a
set of values.

clear(};
I|b = B3

nunreric b, i3

for i =1 to 10 £

print(i, b, i / b)3

-1

== 0} break; # no divide by zero

for i = 1 to NumLins(Rast) { i
for j = 1 to NumCol s(Rast){
(statenment; statement; ...) _J;
}
} ElConsole Hindow

0,

While. Be careful of "while" loops.

while (condition) statenent

As long as the loop condition tests true, the loop
continues. If the condition never becomes false, you
get an infinite loop.

Tine to enecute SHL

20000000000000001
5

Notice that as with all
computer systems, some
operations yield very
small errors in floating
point values (1 /5 yields
0.20000000000000001).

page 13

Spatial Manipulation Language

Using Classes

STEPS

M clear the SML window
with File / New

M select Insert / Class

M scoll through the list in
the top pane of the
Insert Class window
and select class COLOR

= TInsert Class

M w/E3

CallbacklList

Center

ColorHap

Conpositelidget 7]

class COLOR A

Class Henbers:

red : nuneric Read/Hrite

0 - 100

green i nuneric Read/Hrite

0 - 100

blue : nuneric Read/Hrite

0 - 100

transp ; numeric Read/Hrite

0 - 100

namne ; string Hrite Only
Fron rgb,.txt i

md 1 -

Closel Help

= Spatial Hanipulation Language MmE

File Edit Inzert Syntax Help

clear{}: A
class color background:

background.nane = “purple”;

print {"Red:", background.red};
print {"Green:", background.Green};
print {"Blue:", background.BLUE}:

Bl

= Class and member names =
[z are case-insensitive. Lok

= Conzole Hindow

Red: 93,751430533302803
Green: 12,500190737773709
Blue: 62,500953688868542

= B E

A Class is a complex variable that consists of mul-
tiple members in the same way that a database record
consists of multiple fields. Aclass variable may have
any number of members and the members may be of
any data types, including other classes.

Class variables are designed for passing informa-
tion to and from complex functions. In many cases,

the members of a class variable are set only by
a function call, and so are read-only from the
script's point of view; they cannot be given
new values by assignment statements.

A class must be declared with the class key-
word, in the form:

cl ass COLOR background

which declares background to be a class vari-
able of the COLOR type. Members of a class
are specified in the form name.member (just as
database values are specified in the form
table.field). For example, the class Color has
five members that can be assigned values with
statements in the form:

background. r ed=50
background. green=75
backgr ound. bl ue=20
background. t ransp=0

The name member of the Color class is used
only to pass red, green, and blue values to the
class variable from the standard reference file
RGB.TXT. Thus

background. nane =" pur pl e"

sets the RGB components of the class variable
background according to the definition of
"purple” inreB.TXT. The name member is write-
only and cannot be read in other parts of the
script.

page 14

Spatial Manipulation Language

Member Inheritance and Type Checking

An important concept with classes is inheritance.
Class POINT2D represents the location of a 2-di-
mensional point; its members are the x and y coordi-
nates of the point. Class POINT3D is said to be
derived from class POINT2D. This means that a
class variable you declare as POINT3D not only has
its own member z, but also inherits members x and
y from class POINT2D. You can use inherited mem-
bers of a class in the same way you would its native
members.

The use of classes allows strong type checking.
Thus, when you invoke a function that requires a
POINT2D for a parameter, you can pass it any
POINT2D (or derivative class). But the function will
refuse any variable that is not a POINT2D. For ex-
ample, you could not pass such a function a Color
class, because Color is not a POINT2D. By con-
trast, since POINT3D is derived from POINT2D, you
could pass a POINT3D or anything else
derived from POINT2D to a function that

class RASTERINFOD

STEPS
M select Insert / Class
M select POINT2D in the

top panel of the Insert
Class window and
examine its members
select POINT3D in the
top pane of the Insert
Class window and
examine its members
select RASTERINFO in
the top panel of the
Insert Class window
trace the line of class
and member derivation
shown in the bottom
panel

Raster information - eg: Rast.$#Info.HunLins

requiresa POINT2D.

Clase Hembers:

class OBJECT Hull¥alue : nuneric Read/Hrite
Infornation comnon on all objects
HunLins : nuneric Read Only
Class Henbers:
Filenane : string Read Only HunCols : nuneric Read Only
Hunber : numeric Read Only Type : string PRead Only
Hane : string Read/Hrite \
class RASTERINFD is derived fron class OBJECT
and inherits the following nembers from it
Path : string Read Only

Sinilar to "Mame" but includes folder

iilenane : string Read Only

Desc : string Read/Hrite
Hunber : numeric Read Only
Type : string Read Only
Hane : string Read/Hrite
SML includes class equivalents of all of the Path : string Read Onlg

Sinilar to

spatial object variable types (raster, vector,
CAD, TIN, and region). You can use either

“Nane” but includes folder na

Desc : string

type of construct for the spatial objects
referenced in your scripts.

Read/Hrite

Type : string
—

Read Only

page 15

Spatial Manipulation Language

Class Methods

STEPS

M select Insert / Class

M select VIEWPOINT3D in
the top panel of the
Insert Class window
scroll the bottom panel
and examine the class
methods

]

= Insert Class

Some classes include their own functions and pro-
cedures, which are collectively called class
methods. Class methods may be used to pass val-
ues into a class or to perform some other operation
related to the class. Class methods are invoked us-
ing the form name.method(), where name is the name

of the class variable.
H mES

YECTORLAYERPOINTS
YECTORLAYERPOLYS
VIEH

View3D

Hatershed
HatershedPolygon
HatershedPour

TEHPOINT3D

Class VIEWPOINT3D represents the set-
tings for 3D rendering ina 3D View window.
It includes member ViewPos, a POINT3D
class variable that holds the x, y, and z co-
4| ordinates of the viewer. Aclass method is

3

SetViewerPosition{viewerpos}

Hhere:
Hath

Paraneters:
class POINT3D viewerpos
a valid POTHT3D class

Return Yalue
Hothing

Set wviewer position in nap coordinates

used to pass the required values into the
ViewPos class member:

Cl ass VI EWPOI NT3D vp;
Cl ass PO NT3D vpos;
VPOS. X 523487;
Vpos.y 1473245;

‘ Vpos. z 2000;

X

Close

ol |

vp. Set Vi ewer Posi ti on(vpos);

STEPS

M select STRING in the top
panel of the Insert Class
window

scroll the bottom panel
and examine the class
methods

“

=5patial Hanipulation Language MImE

File Edit Insert Syntax

Help

This class method is a procedure, and so
does not return a value.

The methods in the STRING class are all functions
that return either a string or a numerical value. Try
typing in and running the following example:

clear{);

class STRING txt#, charl$, ucks
txt$ = "watershed":

charl$ = txtd.charfit{l};
print{charl¥};

uct = tuti,tolppercase{};
print{uct};

clear();

class STRING txt$, charl$, uc$;
txt$ = "watershed";

char1$ = txt$.charAt(1l);

print(char1$);

ucs txt $. t oUppercase();
print(uc$);

|

=] 1

Tine to exect Run,, .

=Console Hindow

Lanoal

The charAt(n) method returns the n'th charac-
ter in the string (indexed with the leftmost
character at 0). The toUppercase() method re-
turns a copy of the string in all uppercase
characters.

page 16

Spatial Manipulation Language

The simplest type of user input and output uses the
console window. You can print prompt strings and
capture user responses using the print() and input$()
functions. The console input code is simple for the
author of the script, but console prompts may be
missed by an inattentive user.

clear(); print("Enter your nanme:")
name$ = input$()
print("Your nanme is: ",nanme$)

Popup dialog windows offer more flexibility and at
the same time are less likely to confuse the user.
SML includes predefined functions in the Popup
Dialog function group that open dialogs for input of
numeric or string values, yes-no responses, and dis-
play error messages. Where required,
the function parameters include a prompt

User Input

STEPS

M clear the SML window
with File / New

type in the console
window prompt and
input statements shown
in the text and [Run] the
script

choose Insert / Function
click the Function Group
button, select Popup
Dialog from the Function
Group window and click
[OK]

choose File / Open and
select smL / popup.smL and
[Run] the script

]

NI

string that you can use to explain what
value or response should be entered by
the user.

#
clear();

nuneric vals

You can also build your own dialog win-
dows to provide a consistent interactive
interface for your script. These windows
can include push buttons, menus, lists,
and other components that you are fa-
miliar with in the TNTmips user interface.

print{"

Tine t

sanple script for "Hriting Scripts with SH
string pronptf, namef;

pronptd = “Pick a nunber from 1 to 1073
val = PopupHun{pronpt$, 5, 1, 10, 03;
print{"You chose the nunber", vall}:

'nanet = PopupString(“Enter a nane”,
You chose the nane", naned};

EInzert Function

Function Eroup...lPopup Dialog

= Spatial Hanipulation Language _|C1[]
File Edit Insert Syntax Help
popup.snl A

“Fred”};

=Console Hindow E;:;ﬁ:i:gz:ig:ahjg &
i h th b 5 GetOutputOb ject

'rzﬁ Eh:;: th; :::ee;r‘ed Bl =0l Pzpu:EE:or‘ e

Pick a number from 1 to 10 I:'upupﬂessage

The TUtorlaI bOOkIet |_5 PopupSelectTableField
Building Dialogs in 0K | Cancel || |[popurttrine
S M L prov | d es a PopupYesHoCancel 7l
complete overview of ISk =L | pupun]
procedures a.nd teCh- II:_:nt:r a fane Open popup window asking for a nunbeJ

. - re:
nlqueS for Creatlng 0K I Cancell PopupHun{pronpt¥, default, nin, nax,
and using your own Parancters:

custom dialog win-

The popup dialog boxes
dows.

display a default value

promnpt$: string

default : nunber

a string holding the nessage
{Dptionall}

=

I =

if you use one in the
function call.

Close

Insert Details...

page 17

Spatial Manipulation Language

Using Arrays, Matrices, and Stringlists

STEPS

M select File / Open and
select ArrAY.sML from the
smL directory

M examine the script and
its comments

M click [Run] to execute
the script

M examine the statements
printed to the Console
Window

=Spatial Hanipulation Language 1] E3

File Edit Insert Syntax

Numeric arrays are implemented as a variable type
and can be either one-dimensional or two-dimen-
sional. When you declare an array you must specify
the size of the array with a statement in the form:

array nuneric arrayNanme[col s];

array nuneric arrayNanme[rows, cols];

Position within an array row or column is indicated
by a subscript index number, with the first item de-
noted by index 1:

X test Array[1]

Help

array nuneric testarraylhl;
nuneric i;
nuneric x = 100;

llprint{ "Array Status:™ };
for i =1toh £
testarraylil = =3
R += 1003

#44% Declare a one-dimensional array with 5 itens,

Loop through array to zet values and print to console,
#4# HOTE; Array indices begin with 1,

printf{ "Array index %d = Xd\n", i, testarraylil };
3

= You can resize an existing

JI array using the functions
ResizeArrayClear() (which
sets all values to 0) or
ResizeArrayPreserve()
(which preserves existing
values when the array is ex-
4| panded).

]

1 =

Tine to execute SHL script: <1 Secod

Run... I Cantol

Matrices and stringlists are

Some SML vector functions
that return a list of element
numbers or vertex positions
to an array automatically
expand the array size as
needed.

M=lE3

=Console Hindow

Status:
index 1
index
index
index
index

100
200
300
400
500

2
3
4q
5

Hatrix Row 0 Status:
Colunn 0= 100
Colunn 1= 200
Colunn 2= 300
Colunn 3= 400
Colunn 4= 500

Stringlist Status:
Hunber of itemns = 3
Index 0 = ten

Index 1 = twenty
Index 2 = thirty

implemented as classes. Amatrix is always two-di-
mensional, so you must specify the matrix size as
follows:

class MATRI X matri x;
mat ri x CreateMatri x(rows,

cols);

The Matrix function group also provides functions
to set and read matrix item values and to invert, trans-
pose, and perform arithmetic operations on matrices.
Matrix row-column position indices begin with 0.

A stringlist can be used to hold a list of string val-
ues. Methods in the STRINGLIST class allow you
to add strings to the end or beginning of the list, to
get a string by its index (beginning with 0), to re-
move a specified string or remove duplicates, and to
sort the strings. You can also use array subscript
notation to retrieve strings from the list by position.

page 18

Spatial Manipulation Language

Script Development and Editing

The easiest way to develop an SML script is to adapt
an existing script to the intended new task. Many
sample SML scripts are distributed with the TNT
products in the scripTs directory, which has
subdirectories for different categories of scripts (vec-
tor, database, tool scripts, and others). You can also
use any of the examples from this tutorial booklet as
starting points for your own scripts.

You can open two SML script editing windows side
by side and use the SML copy and paste functions
to copy sections of code from an existing script into
the script you are developing. You can access the
SML cut, copy, and paste functions from the Edit
menu on the SML window or from a pop-up menu
that opens when you press the right mouse button
(with the cursor within the editing pane). If
you are running under the Windows or Mac
OS X operating system, these SML func-

STEPS
M keep the script from the
previous exercise open
open another instance
of the SML window with
Process / SML / Edit
Script
move the new SML
window so it does not
obscure the first one
M select several lines of
code from the first script
M use the Copy and Paste
options on the Edit
menus to copy the
selected section to the
new script
choose File / Exit for the
new script window and
do not save changes

]

= Spatial Hanipulation Language |00 x|
File Edit Insert Syntax Help
popup.snl i

tions use the operating system's clipboard,
S0 you can also cut and paste text between ||*
the SML editor and another text editor.

Anumber of low-cost or freeware text edit-
ing programs provide color-coded syntax
highlighting for various programming lan-
guages. The Microlmages website
(www.microimages.com/gvim) provides links

clear{};
string pro Cut
nuneric va

al = Popul

Iprint("You

zanple =cript for "Hriting Scripts wii

Cirl+Ins
Shift+Del
Shift+Ins

Copy

Paste

Character Hap...

Right mouse-button menu with
Copy, Cut, and Paste options

to a number of these editors

BT TextPad - [C:\tntdata\smI\VIEWSHED .sml]

=1}

as well as configuration files

File Edit Search Wiew Tools Macros Configure ‘Window Help - &

x

nuneric xVector,
numsric psrcent.

yVecto:
height

to enable SML syntax high-
lighting. The available
editors include UltraEdit and
TextPad (Windows), Vim
(various platforms) and Hy-
dra (Mac OS X 10.2 and
higher). Although these edi-
tors can highlight syntax,
they do not provide access
to the SML syntax checker.

#ARk
clear(): # clear
get the input and out
GetInputRaster{ Rin):
GetInputVectori V):
GetQutputRaster(Rout,

get georef object id'

numPoints = 0;

<]

SML function names, key-
words, operators, and
comments can be shown in
different colors in syntax-
highlighting editors. |
= IOT ISSTET ond veCtoT
georefR = GetlastUsedGeorefObject(Rin)

georefV¥ = GetlastUsedGeorefObject(V)

first count total number of points in all lines

numlines = NumVectorLines({ V).

for thisLine = 1 to numlines {
nunPointsInThisline = GetVectorLinsPointList(V. =ir
numPoints += numPointsInThisline:
i

—
£ J

»
>

page 19

http://www.microimages.com/gvim

Spatial Manipulation Language

Preprocessor Commands and Debugging

STEPS
M select File / Open and

select peeuc.smL from the

smL directory
M select Insert Keyword
M scroll to the bottom of
the list in the Insert
Keyword window to
see the SML

preprocessor directives

M close the Insert
Keyword window

M scroll through the script

to see how the
preprocessor
commands are used

M [Run] the script,
following the steps on
page 5

M examine the values
printed to the Console
Window

=Console Hindow

Line= 1, HumYertices= 19

i= 1, x¥ect= 593181.7568, yYect= 4139497.3430, rLine= 226, rCol= 150]
i= 2, x¥ect= 593224,1105, yYect= 4139582.0503, rLine= 218, rCol= 154
i= 3, uVect= 693228,8165, yVect= 4139619.6980, rLine= 214, rCol= 155
i= 4, uVect= 593261.7582, yVect= 4139666.7576, rLine= 209, rCol= 158 £

The SML process includes a set of preprocessor
directives that are interpreted before all of the regu-
lar script statements. Preprocessor directives allow
you to set up alternative script modes and to call up
other scripts.

While you are developing a complex script you might
want to have a "normal” mode of execution and a
"debug" mode. In debug mode the current values
of variables would be printed to the console at vari-
ous points in the script to help you verify correct
execution of intermediate steps and/or identify
points of failure. You can set up the debugging
mode using the directive

$defi ne DEBUG

and bracket all of your sets of debug statements
with the following pair of directives:

$i f def DEBUG
[series of print statenments]
$endi f

To run the script in the normal mode you would
simply comment out the single $define statement,
deactivating all of
= your debugging
code but leaving it
in place for later

The SML preprocessor
directives can be inserted
using the Insert Keyword
window:

$i f def

$define

$i ncl ude

$i f ndef

$el se

$endi f

$war ni ngs

$i mpor t

use. The scriptin
this exercise is a version of the viewsHeD script that
illustrates the use of printf() statements in a debug
mode.

You can have a script read and execute another SML
script by using the $include directive:

$i ncl ude "another.sm"

The included script should be in the same directory
or Project File as the parent script. If you have sev-
eral scripts that need to use the same user-defined
function, the function definition can be in a sepa-
rate script that you "$include" in the other scripts.

page 20

Spatial Manipulation Language

SML Debugger and Script Timing

The SML Debugger window provides a specialized
script execution environment designed to help you
analyze and debug a complex script. Icon buttons
on the window let you run the script as usual or step
through it one statement at a time. As the script
executes, a blue arrow symbol moves down in the
left column of the window to show the current ex-
ecution step. You can also insert temporary break
points by clicking in the left column of the window.
Execution of the script stops automatically when-
ever a break point is encountered. You can restart
execution after the break using the Run or Step icon
buttons. You can remove a breakpoint by clicking
on its symbol.

The SML Debugger window can also show the ex-
ecution time (in seconds to hundredth-second
accuracy) for each script step. For user-defined func-
tions and procedures, cumulative times for one or
more function calls are shown with the function defi-
nition, not where it is called in the script. You can
use this tool to determine whether you can improve
the speed and efficiency of your script.

Execution times =SHL Debugger 0[]
are shown in the pl;ﬂl ggl @@

expanded left \ [Tine |

column. Times - # HHILEFOR,SHL A
less than .005 # sanple script for "Hrit]
second are \ :uneric a, i3

shown as 0.00. 0,00 cleart):

Click in the left 0,00 uhile (a (= 3603 ¢
column to place a g:g: :r:"Z :aiojln(a’deg”’
temporary break 0.00 3

point where script\

execution will @ 0.00 print ("H4$44): i
automatically stop. PH———1 E

o

]
|

M press the Step

M press the Stop

STEPS

select File / Open and
choose wHiLEFOR.sML from
the swmL directory

select File / Debug

in the SML Debugger

window, press
the Show Pseudo @I
Code icon button,
examine the code, then
press again to restore
the normal script view
scroll down to the
print (" #####")
statement and left-click
in the left column
(yellow) to place a
break point (red symbol)

next to it
press the Run EI
icon button in the
Debugger window; note
the blue arrow indicator
stops at the break point

M click on the break point

to clear it
press the Show
Timing icon button

&l
icon button ten EI

times; note the repeat of

the “for" loop

icon button

M close the SML Debugger
window using the X
icon button in the
window title bar

=SHL Debugger

B2

=l

print (“#EEEE"):
o

[
i

Turn on the Show Pseudo Code icon button to /
expand the script view to show pseudo assembly
code generated for each script statement.

A
I

{a)
360

push
push
le
pop jfalse 0035
{a, sinf{aldeg)};
push {a}
push {a}

page 21

Spatial Manipulation Language

Toolbars and the SML Custom Menu

0] %]

Custon | Help

' RATIOSCL (SHL}
SOILTEST {SHL}
YIEWSHED {SHL}
devegb8 (SHLY

novie

ORBITSP (SHL)
PAN1 {SAL}

PATHGALT {SHL}
PATHcHTL (SHL)
PATHcHT2 (SHL}
YSHEDHOY {SHL}

The Custom
menu
cascade lists
the scripts in
the custom
directory in your TNT
installation directory.

)]
|
m
U
9]

choose Toolbars / Edit in
the TNTmips main menu
press [New] in the
Toolbar Editor window
edit the Name field to
read "SML Toolbar"
select Horizontal from
the Orientation menu
click [Add SML...]

select sMmL / VIEWSHED.SML
click [Icon...] and select
an icon

repeat the previous two
steps for smL /
SOILTEST.SML

click [OK] to finish

R ®H ®H ®H H

8

You can selectand run any SML script without open-
ing the SML editor window by selecting SML / Run
from the Process menu. You can also add frequently-
used SML scripts to the TNT main menu. Simply
create a directory named custom in your main TNT
directory. Each script you place in this directory
then appears as an entry on a Custom menu on the
TNT main menu. Scripts in subdirectories in the
custom directory appear on submenus on the Cus-
tom menu. Selecting a script from the menu runs the
script.

You can also assign SML scripts to icons on cus-
tom toolbars. Use the Toolbar Editor window to
create or select a toolbar, set a horizontal or vertical
orientation, and set up label positions. Then select
one or more SML scripts and edit the Label and
Tooltip text boxes as illustrated to establish the in-
terface text for each. Press the Icon button to select
an icon for each script. The steps in this exercise
create a new SML toolbar with two script icon but-
tons.

= Toolbar Editor _ICI[x]
Toolbars
General = Hew
Airphoto Interpretation

A

Mane: |SHL Toolbar

Orientation; Horizontal —Jl Labels; Below —JI Icons: Large .Jl

Use the Toolbar Editor to
add viewsHepand SoILTEST
icons to a new SML
toolbar.

Selected Processes

Run SHL script "YIEHSHED”
Run SHL script "SOILTEST]

Available Processes

Apply Contrast

Attach Attributes
Autonatic Classification
Buffer Zones

CAD Extract

A
= Rdd -->
Add SHL...

Renove |

£
SOILTEST
Run SHL script *SOILTEST®

tntdisp -snl C:iitntdatahsnlNSOILTEST.snl

Label:

Icon.,.. I ?& ToolTip:

Connand?

= SHL Toolbar mE3

DK Eancell Help

e 7

8

Run SHL script "SOILTEST”

VIEHSHED SOILTEST |

page 22

Spatial Manipulation Language

A full set of raster functions let your SML scripts
read, create, and analyze raster objects. You can write
mathematical expressions to compute values for a
new raster object from one or more input rasters or
use various higher-level SML functions to create new
raster values.

Use the GetOutputRaster() and CreateRaster() func-
tions to create new raster objects. When you create
an output raster object, give some thought to your
choice of the specifics of its data type: binary, inte-
ger, signed, unsigned, and floating point. For
example, if your script's computations can create
negative output cell values, be sure to specify a signed
data type. Several functions provide access to raster
subobjects.

The raTiOoscL sample script is designed to compute
the ratio between two raster image bands (assumed
to be 8-bit unsigned rasters) and rescale the result to
the 8-bit unsigned data range for the output raster.
The raw ratio values could range from .004 (1 / 255)
to 255, and separate scaling is applied for ratios less
than or greater than 1. The scale factor for the upper
range is based on the maximum ratio value for the
entire image area. This necessitates
storing the raw ratio values in atem-
porary floating point raster,
computing the
scale factor from
the maximum ra-
tio value, then
computing the
rescaled values
and writing them |
to the final output
raster. '

A

Raster Objects

STEPS

o

“

KR

select File / Open and
select raTIOSCL.SML from
the swmL directory

study the script
structure and statement
syntax

run the script

when prompted for a
raster for n, select
pHOTO_IR from the cB_Tm
Project File in ca_baTA
select rRep from the cB_Tm
Project File for input
object b

M create a new raster

object for raTioscL

M for this exercise and

Scaled ratio raster (left) produced
by raTiOSCL.SML. from cB_T™m / RED
(center) and cs_1m / PHOTO_IR (right).

those on the following
pages, use the Display
process to display the
input object(s) and the
new object(s) created
by the script

page 23

Spatial Manipulation Language

Vector Objects

STEPS

M select File / Open /
*.SML File and open the
script vectcoms.smL from
the swmL directory

M run the script using for
input HYDROLOGY and ROADS
from cB_DATA/ cB_DLG

CloseYector
Createlenp¥ector
CreateYector
FindClosestlabel
FindClosestLine
FindClosestHode
FindClosestPoint
FindClosestPoly
GetInputYector
GetInputYectorlList
GetDutputYector
GetYectorLinePointList
GetYectorNodelinelist
GetYectorPolyAd jacentPolylist
GetVectorPolyIslandList
GetVectorPolylinelist
HunYectorlabels
HunYectorLines
NHunYectorNodes
HunYectorPoints
HunYectorPolys
OpenInputYectorlList
OpenYector

YectHerge

YectorfAND
YectorElenentInRegion
YectorExists
YectorExtract
YectorOR
YectorReplace
YectorSubtract
VYectorToolkitInit
YectorX0R

Vector functions are listed in
the Vector (above), Vector
Network, and Vector Toolkit
function lists.

A growing list of functions support vector object
creation, reading, writing, and manipulation. Look
for vector function definitions in the Vector, Vector
Network, and Vector Toolkit groups.

A simple script illustrates basic functions for input,
output, and one of the vector combinations:

Get | nput Vect or (Voper at or) ;

Get | nput Vect or (Vsour ce) ;

Get Qut put Vect or (Vor) ;

Vor = Vector OR(Voperator, Vsource);

\ector extraction operations are supported by simi-
lar functions. For an example, refer to the sample
script scripTs / VECTOR / VECEXTR.sML from the TNT
Products CD.

SML also supports more complex interaction be-
tween vector objects and objects of other types. You
have already seen viewsHep.sML (page 5). Another
example is provided in scriPTs / FOCAL / VECFOCAL.SML,
which uses points in a vector object to select cells in
a raster object and applies the FocalMean() func-
tion to each of those cells in turn. Open that script
and observe how the vector coordinates
(x=V.point[i].Internal.x) are translated into map coor-
dinates using the georeference function
ObjectToMap(V,x,y,georefV,xVector,yVector), and
how MapToObject(georefR, xVector, y\Vector, R,
rCol, rLine) finds the raster cell corresponding to the

map coordinates.
The short
1 j script
shown
above uses
VectorOR()
) to combine
A AN two input
" Kf\ {‘ vector
Q\‘H{ objects into
%g) asingle
= output

1
RAN S g 7s A

> SN

EN

page 24

Spatial Manipulation Language

Using the Vector Toolkit

The functions in the Vector Toolkit function group | STEPS

enable a script to modify elements in an existing vec- | @ Select File / Open/*.SML
. . File and open the script

tor object or add new elements to an object. To VTOOLKIT.SML from the st

modify an existing vector object, the script must first directory

initialize the vector toolkit for use with that object: | ¥ study the script
structure and comments

Get | nput Vect or (V) ; M run the script using for
Vector Tool kitlnit(V); input pem_168iT from the
[Editing operations with vector cB_ELEV Project File in
tool kit functions] CB_DATA
O oseVect or (V)) ClozestPointOnLine

) . YectorAddLabel
When you will be adding elements to a hew output sttt o
vector object, toolkit initialization can be done when VectorAddPoint

VectorAddTwoPointLine

the object is created. The second argument to the VootorChangel ine
GetOutputVector() function is an optional flag string | yecserthansefoint

YectorDeleteDanglel ines

that can be used to set the topology level and to ini- e

YectorDeletel abels

tialize the vector toolkit. For example, setting this VectorDeleteline

. o el e YectorDeleteli
argument to "VectorToolkit,Polygonal initializes the | vectorbelsteNade

VectorDeleteNodes

vector toolkit and establishes polygonal topology for VectorDeletePoint
H YectorDeletePoint.

the vector object. VectorDelotePoly

YectorDeletePolys

The sample script vrooLkiT.sMmL shows how some of VectorDeleteStdAttributes

YectorLineRayIntersection

the vector toolkit functions can be used to create el- VectorSetFlags
ements in a new vector object. The script firstopens | vecroruudotoseamteributes
an input raster and finds its geographic pector¥alidate

extents and the map position of the cell
with the highest value. The scriptthen cre-
ates a new vector object with implied
georeference to the input raster object, adds
a point element at the position of the maxi-
mum cell value, and draws a vector line
outlining the raster extents. The location
on this boundary line that is closest to the
maximum cell point is then found, and a
line is added connecting these two loca-
tions. The vector object is then validated
(to check topology and compute standard
attributes) and closed.

Raster bem16_giT and the vector object /
created from it by the sample script.

page 25

Spatial Manipulation Language

CAD and TIN Objects

STEPS

M select File / Open /

*.SML File and open the

script sML / cAD.SML

examine and then run

the script using raster

object HavwarD from the

HAYWDEM Project File in

SF_DATA

M open the script sml /
TIN.SML

M study and then run the
script, using object
eLev_rTs from the
SURFACE Project File in the
surrmobL directory for the
input

)

CADAttachDBRecord
CADCreateBlock
CADElenentInRegion
CADElenent Type
CADGetElenentlist
CADInsertBlock
CADHunBlocks
CADHunElenents
CADReadArc
CADReadArcChord
CADReadArcHedge
CADReadBox
CADReadCircle
CADReadEllipse
CADReadEllipticalfrc
CADReadEllipticalfArcChord
CADReadEllipticalfircHedge
CADReadL ine

CADReadPoint

CADReadPoly

CADReadText
CADUnattachDBRecord
CADHritefirc -
CADHritefircChord
CADHritefArcHedge
CADHriteBox
CADHriteCircle
CADHriteEllip=se
CADMriteEllipticalfAre
CADHriteEllipticalArcCh
CADMriteEllipticalArcHe:
CADHritel ine
CADHritePoint
CADHritePoly
CADHriteText

CloseCAD

CreateCAD

GetInputCAD
GetDutputCAD

OpenCAD

A growing list of functions support CAD and TIN
object creation, reading, writing, and manipulation.
Sample script cap.smL uses some of the numerous
CAD functions. The script uses a raster object as
input to define geographic extents and georeferencing
and creates a new georeferenced CAD object to
which several elements are added. A circle element
is drawn centered at the geographic center of the ras-
ter, then a line element is drawn from the center to
the circumference of the circle. Several box elements
are then added around the center point.

H H CloseTIN
Sample scriptTin.smLillus- - Geset tw
trates some of the TIN EetOutputTIH
R TINAddHode
functions. It uses the TiNCreateFronHodes
TIHDeleteEdgeAndHakeHol
TINCreateFromNodes() Tiweletehode

TIHDeleteNodeAndHakeHole

function to make a new
TIN object from arrays of
node coordinates. The co-
ordinate arrays are created
in this case by reading the
coordinates of points in a
3D vector object. The
script also uses functions

TIHDeleteTriangleAndrakeHole
TIHDeleteTrianglesInFolygon
TIHElenentInRegion
TIHGetConnectedEdgel ist
TIHGetConnectedHodel ist
TINGetEdgeExtents
TINGetEdgeHodesAndTriangles
TINGetHodeExtents
TINGetHodeZYalue
TIHGetSurroundTrianglelist
TIHGetTriangleExtents
TIHGetTriangleHodesAndEdges
TIHGetTrianglesInPolygon

TIHHunberEd:
to read the number of TIN TINNubertulle
Aulls, eges, and triangles, o
TIHSetHodeZYalue

page 26

Spatial Manipulation Language

Region Objects

You can also create and use region objects in SML
scripts. Region objects represent the outline of a
region of interest in operations on other spatial ob-
jects. SML functions in the Region function group
allow you to open and save region objects, check if
particular map coordinates lie within the region, and
perform region combination operations (AND, OR,
Subtract, and XOR). Several functions in the Ob-
ject Conversion group allow you to convert vector
and binary raster objects into region objects.

SML provides a simple way to use a region object to
restrict actions on a raster object. The simple con-
struction

for each RastVar in RegionVar {
[actions]

}

restricts the actions to raster cells that lie within the
region boundaries. This construction provides asim-
pler alternative to using values in a binary mask raster
to control the operations.

The sample script Recion.smL illustratesthe = = -
use of some of the region functions. The = . -.
script opens two region objects and usesthe “- *
RegionAND() function to find the region
that is their intersection. This new region

STEPS
M select File / Open /*.SML

File and open the script
REGION.sML from the smL
directory

M study the script

structure and comments

M run the script using for

input the region objects
POLYREGION and RECTANGLE
from the smL / REGION
Project File and vector
object eLev_prTs from the
SURFMODL / SURFACE Project
File

ClearRegion
CopyRegion
CreateRegion
GetInputRegion
GetOutputRegion
OpenRegion
PointInRegion
RegionAHD
RegionOR
RegionSubtract
RegionTrans
RegionX0OR
SaveRegion

is then used to find information about point
elements in the corresponding area of an
input 3D vector object. The script uses the
PointInRegion() function in a "for each”
loop to examine each point's coordinates
and select only those points that lie within

the region.

EConsole Hindow

Hunber of points in region interszect = 81
478

Haximum point elevation in region intersect = 2
Hap s-coordinate of maxinun elevation point = 522806,6166251945
=1

Hap y-coordinate of maxinun elevation point

425041, 0612069929

page 27

Spatial Manipulation Language

Database Objects

STEPS

)

)

open the sample script
DATABASE.sML from the smL
directory

run the script using
object HsoiLs from the
HAavwsolL Project File in
the sr_paTa directory for
input

open the sample script
pe2.sML from the smL
directory

run the script using
object cB_soiLsLiTe from
the cB_soiLs Project File
in the cB_pata directory
for input

DatabaseGetTableInfo
FieldGetInfoByHane
FieldGetInfoByHunber
HunRecords
OpenCADDatabase
OpenDatabase
OpenRasterDatabase
OpenTIHDatabase
OpenYectorLineDatabasze
OpenYectorPointDatabase
OpenYectorPolyDatabase
RecordDelete
TableAddField
TableAddFieldFloat
TableAddFieldInteger
TableAddFieldString
TableCopyToDBASE
TableCreate
TableExists
TableGetInfo
TableInsertFieldFloat
TableInsertFieldInteger
TableInsertFieldString
TablekeyFieldlookup
TableLl inkDBASE
TableNeuRecord
TableDpen
TableReadfAttachnent
TableReadFieldHun
TableReadFieldStr
TableHritefttachnent

Sample script batABAsE.sML shows how to read at-
tribute values from a database. The syntax is an
extension of the TABLENAME.FIELDNAME construction
used in queries. Inan SML script, the database field
reference must also specify the object, the database
subobject (a separate database is maintained for each
type of element in a vector or TIN object), and the
element number. If the field being read is a string
field, you must also append the "$" character to the
end of the field reference:

string$ = Vect.poly[4].table.field$.

Functions to create and modify databases are found
in the Database function group. This group includes
functions to create new tables, to add or insert fields
in tables, to write new records in a table, and to at-
tach records to elements in the spatial object. Sample
script pe2.sMmL provides examples of these operations.
It creates a new vector object with points located at
the centroids of polygons in the input vector object,
creates a point database and table, and copies selected
attributes from each polygon to the associated point

GetInputVector{V};
nunpolys = HunVectorPolys{V);

for_i_sd-&
acres = V,polylil,50ilType.Acres;

<__type$ = V,polylil.Hildlife,SoilHaned: —>

printf{"Polygon # %d: Soil type = s, acres =

Ehsoils / PolyData ¢/ SoilType

element.

PopupHessage{“Select sf_data/HAYHSOIL/hsoils");
vector V3

nuneric numpolys, i, acres:

string typet;

DATABASE.sML refers to the
AcreEs field of the soiLTyPE
table and the soiLnaME

field of the wiLpLiFe table.

Rdin",i typed,acresl);

Help

TableHriteRecord 1

hY

Style| HapSunhnl\SoiLNane Acres Yercent
107||:lear‘ Lake clay, 0 to 2 percent slopes I 8140,0 ‘ 5,64
108[Clear Lake clay, 2 to 9 percent slopes, draind 1710.0/| 1.2|
109|Elinara clay, 30 to 50 percent slopes \ 370.0, 0,3

7.4

llllﬂanville silty clay loan, 0 to 2 percent sluﬁlﬂﬁsﬂ.g
N—

Table Edit Record Field SConsale Hindow
+ v |4, = Polygon # 99: Soil type = Xerorthents, acres = 3135 |
G ol " = Polygon # 100; Soil type = Botella, acres = 4625
Style |HapSynbyfSoillane Grain_Seed Polygon # 101: Soil tupe = Los Osos, acres = 305
& | 7 Clear Lake \Fair Polygon # 102t Soil tupe = Gaviota, acres = 215
Polygon # 103t Soil tupe = Los Osos, acres = 1675
@ {0y ey | Eeed Polygon # 104: Soil type = Gaviota, acres = 215 5
CIl A3 CLinara Foor
Ol INanville / [Good - =

page 28

Spatial Manipulation Language

Converting Objects

One common rationale for creating an SML scriptis | STEPS _
the desire to automate a multi-step processing se- | ¥ open the sample script
.. soILTEST.sML from the smL
quence that needs to be performed repetitively on a directory
number of different input datasets. The ability to | & study the script, then run
convert geospatial data from one type to another it using objects in the smL
within SML gives you great flexibility in designing fnSS’&TEETSErgé?géth'fML‘fTs
such a script. The standard TNTmips data conver- for the "Points” and
sion processes lead the industry in support for data object BounDARY for
types and functionality. Many of these conversion - "Boundé:]f y"d ot val
processes are available as functions in SML in the accept the default values
. . X . for the other parameters
Object Conversion function group. Other special- requested by popup
ized conversion functions in the Surface Fitting group dialog windows
interpolate a raster surface from a vector or TIN in- BinaryRasterToRegion
. C tCHYKtoRGE
put object. ConvortHESLoRG
ConvertHIStoRGE
The soiLTesT.smML sample script automates the pro- Ez::;:::::;zﬁ?:\fect
cessing of soil sample data and uses several types of Conver tRGBtoHBS
. . . . ConvertRGBtoHIS
object conversion functions. The script reads a se- Conver tRGBLoHSY
ries of soil chemistry values stored in a database table o e torpul TR
attached to input vector point elements representing R e e otB
sample locations. For each type of value (soil pH, RasterRGBToConposite
. . RasterToCADBound
organic matter content, and others) the script uses a RasterToCADLine
- - RasterToTINIterative
surface fitting function to create a surface raster. In RasterToVectorBound
intermediate steps the script uses a vector polygon pastor To¥eokortentour
representing the field boundary to create a blank ras- ULdEeer
TINToYectorContour
ter to use as a mask for each surface. It also creates a VectorElenentToRaster
YectorToBufferZone

region from the
polygon and uses
the region to
write the value

1 into every

cell in the

mask raster

that lies in-

side the field))
bounda Soil test Field

ry. sample boundary
points polygon

Computed soil
organic matter
surface raster

Computed soil pH
surface raster

page 29

Spatial Manipulation Language

Sample Script: Extract Polygons

STEPS The sample script Ticer1.smL provides an example of
¥ choose File / Open / vector and database processing in SML. It extracts
* SML File and select smL

J TIGERL.SML specified lines from an input vector object, writes
M study the script them into an output vector object, and transfers in-
structure and comments | put line attributes to output polygon attributes.
CApaELATa e :I'IGER.]..SML was designed tp process vector_ob—
% R | Jectsimported from TIGER line files (2000 version)
] P e produced by the United States Census Bureau.
Re plens #HRRNE £ TIGER geodatais organized by county, and inte-
1 T Thed N grates line geodata of many types (hydrology,
igﬁ N TTee roads, administrative and census boundary lines)
PR EIEs into one vector data layer. Topological polygons
shp-d —H W result from the intersection of these various line
ZW = 4 51:%;—“ types, but individual polygons have little geo-
O O Pl wr graphic meaning. Area attributes are coded only
waviimaul HFEPTE as attributes of the left and right sides of lines.
PR e B This characteristic of TIGER data makes it diffi-
N S PERE PR cult to access and display areal information using

TIGER vector for a single the raw vector ObJeCtS-

county with lines styled

based on their attributes. Area boundary lines in the TIGER vector, such as

TIGER files are available for city and town boundaries, can be identified by
free download at the inequality of particular attribute values on ei-
WWw.census.gov. ther side of the line. This script finds city
Raymond boundary lines in an input TIGER vector object

vatoolm way and writes each line to a new output vector ob-

ject. When all line elements for a particular city
boundary have been transferred, they intersect
to form a polygon in the output vector. If the
current line completes a new polygon, the city
name is read from the input line database and a
new polygon database record containing the
zemet name is created for the output vector. A multi-

Penton

oprague R::m“ input version of this script has been used at

sama Microlmages to process all of the 93 county TI-

Extracted city polygons for GER vector objects for the state of Nebraska to
the same county, with labels. produce a single statewide city polygon object.

More about the extract polygon script is available in an online document at

http://www.microimages.com/relnotes/v65/smitiger.pdf

page 30

Spatial Manipulation Language

Sample Script: Network Routing

The sample script NETWORK1.sML Shows a more com-
plex application of vector and database processing
in SML. It uses network analysis functions to ad-
dress the problem of efficient delivery of materials
from numerous dispersed locations (such as farms)
to a small number of destinations (such as process-
ing plants). The objective is to determine the
shortest network distance from each farm to each of
the processing plants, so
each farm can transport
goods to the nearest plant.
A script is required to solve
this problem because the
farm and plant locations are
represented as points in
vector objects separate
from the object containing
the road network.

For each farm and process-
ing plant, the script adds a
node to the roads object at
the closest point on the clos-
est line. It keeps track of the
element numbers of these
two sets of added nodes in
a pair of arrays so that net-
work distances can be associated with the correct
farm and plant. Network analysis functions are then
used to compute the required set of distances, which
are stored in a new database table for the vector
points representing farms. For each farm point, there
is one attached record for each processing plant,
showing the minimum network distance.

STEPS

M choose File / Open/
*.SML File smL/
NETWORK1.SML

M study the script structure
and comments

M run the script using
objects FARMS, PLANTS,
and roabs from the smL /
NETWORK1 Project File

Sample result from the

network script. Farm
locations (circles) have been
styled in the same color as
the processing plant location
(squares) that is closest to it
along the road network.

More about the network script is available in an online document at

http://www.microimages.com/relnotes/v65/sminz.pdf

page 31

Spatial Manipulation Language

Creating and Opening a View Window

STEPS

M select File / Open /
* SML File and select
VIEW.sML from the smL
directory

M run the script using as
input raster _8_giT from
the ce_cowmp Project File
in cB_batA sample data
directory

M select View / Close to
close the window

An SML script can create and open a View window
to display input or output objects used in the script.
The View can also be used to provide user interac-
tion with the objects via the standard graphical tools
found in the Display process.

View windows are created using the Motif widget
(dialog component) set that is used to create all of
the windows in the X Windows versions of the TNT
products. In Motif, any window (dialog) begins as
an instance of class XmForm, a generic container
widget. The GroupCreateView() function is used to
create the view widget to display a geodata group

within the parent dialog. Other func-

Yiew ¥oul LegendYiew GPS Options Help

tions in the Geodata Display, Geodata

20| 2 dlgj@lel

T
¢

Display Group, Geodata Display Lay-
out, and Geodata Display View function
groups allow you to set up a group to
display, to add objects, and to access
coordinate and scale information.

L-|

Sample script view.smL shows the basic
steps required to open a view window
of a group and display an input raster.
The script in the next exercise displays
several data layers and provides a
graphical point tool for obtaining coor-
dinate information from the View. The
movie scripts and APPLIDAT scripts
discussed subsequently provide further
examples.

I SML also provides another, simpler way

Tine to drauw: {1 Second

! to provide user interaction between a

For more information about
creating dialog windows
consult the tutorial booklet
Building Dialogs in SML.

script and data in a View. Tool Scripts and Macro
Scripts can be launched from a View window in the
Spatial Data Display process and can automatically
access and operate on the objects in the View. These
scripts are discussed in detail in a later section of
this bookilet.

page 32

Spatial Manipulation Language

Coordinate Systems in Views

Previous exercises have discussed SML functions
that use an object's georeference information to con-
vert position information between object coordinates
(such as raster line and column numbers) and map
coordinates. When you display spatial objects in a
view within a dialog window, several other coordi-
nate systems come into play. Sample script
pTcoorp.sML Will help you explore these coordinate
systems and illustrates the resources available to
convert between them. The script displays a preset
raster (with UTM coordinates) and vector object
(with latitude/longitude coordinates) and provides a
point graphic tool with which you can select a posi-
tion. When you apply the tool (right-click), the point
position is reported in the console window in vari-
ous coordinate systems.

A graphic tool used in a view returns posi-

o

|

=Find Point Coordinates

View LegendView GP5 Options

STEPS

select File / Open / *.SML
File and choose smL /
PTCOORD.SML

run the script

M left-click in the window to

place the point tool

M right-click to view

coordinates in the
Console window

try various point locations
to see how the different
coordinate types vary
study the script to see
how the coordinate
transformations are
performed

Close the Find Point
Coordinates window
when you are finished

tions in view coordinates. Forasingle group
view, view coordinates are the group map
coordinates. The group coordinate system
is determined initially by the georeference
of the first layer added to the group, but can
be modified by a script by resetting the Pro-
jection class for the group. Screen
coordinates are the coordinates of the draw-
ing area of the view (in pixels), where the
obejcts are actually displayed. If you want
the script to draw additional features into
this drawing area, the drawing functions re-

EEFE TR

quire screen coordinates. Each layer in the

view also has layer coordinates, which are

Left-click in the window to locate a point. |

the object coordinates for the object in the
layer, as well as layer map coordinates. The Geodata
Display View function group includes functions to

translate betWeen VIeW View coordinates: » = 633864.06, y =
Screen coordinates: ® = 67, y = 266
Raster layer {object} coordinates: =
Yector layer {object} coordinates: x =
Raster layer map coordinates: x = B33886.07, y

in Universal Transverse Hercator Zone
Yector layer map coordinates; x = -103,36, y =

coordinates and screen,
layer, and layer map coor-
dinates.

Close
4730504.92
= 82.68, y = 366.80
= 326.33, y = 2408,09

= 473047008
13 (H 108 to H 102}
42,72

in Latitude / Longitude

Group coordinates = Wiew coordinates for group
Group coordinate system = Universal Transverse

vieu,
Hercator

page 33

Spatial Manipulation Language

Movie Generation Scripts

STEPS

M choose File / Open /
* SML File and select
SCRIPTS / MOVIE /
VSHEDMOV.SML

M study the script
structure and comments

= Insert Function
Function Group...'Frane

FraneCopy
FraneCopyFronYiew
FraneCreate
FraneCreateFronYieuw
FraneCreateGC

FraneGetHeight
FraneGetHidth

FraneDestroy = Insert Function
Function Group...'ﬂnuie

An SML script can create and record custom anima-
tions from your geospatial data. The sample script
in this exercise creates a movie file showing a series
of viewsheds computed from an elevation raster at
different points along a vector line.

Any animation consists of a gradually-varying se-
quence of static frames. A movie generation script
captures frames from the contents of one or more
view windows created by the script and copies each
frame into an output MPEG or AVI file. The movie
can therefore record any sequential change in the
view window(s) used to create the frames. Func-
tions in the Frame and Movie function groups are
used to set up the generic frame and movie
parameters, capture the view window con-
tents to a frame, and copy the frame contents

HoviefddFrane
HovieExit
HovieGetFileExt
Hovielnit
MovieSetFornat

HovieSetFraneRate

HovieStart
HovieStop

HovieSetFraneHeight

HovieSetFraneHidth

to the output file. You can also annotate
each frame with text or position markers us-
ing functions in the Drawing function group.

Sequential changes in the View window can
be achieved in several ways. The script
could add and remove a series of pre-pre-
pared layers to and from the view. It could
also modify the display parameters for a
single continuing layer. For vector objects,
this could involve basing the element styles
on a sequence of varying attribute values
(such as population in different years). The
final method is exemplified by the vsHEDMOV
script: the script itself computes the
changes from the supplied data and param-
eters. For each frame in this movie, the script
computes the current viewshed and dis-
plays it in the view window in yellow over a

;
b||l||«« »m|.;3|

shaded-relief rendering of the elevation
model.

More about the movie generation scripts is available in an online document at

http://www.microimages.com/relnotes/v65/moviesml.pdf

page 34

Spatial Manipulation Language

3D Simulation Scripts

An SML movie script can also use the 3D perspec-
tive rendering capabilities of TNTmips to record
custom 3D animations. A script can open a 3D per-
spective view window and change the viewing
parameters for each frame in the movie, allowing
you to move over, on, and around a 3D surface. SML
incorporates all of the functionality of the 3D Simu-

STEPS

M choose File / Open /
*.SML File and select
SCRIPTS / MOVIE /
PATHCHT1.SML

M study the script structure
and comments

lation process in TNTmips, but expands your

control over the viewing parameters.

Class members and methods in the
VIEWPOINT3D class are used to manipulate
the settings for the 3D view. Each 3D view has

Comprezzor: Ok |
‘Fu\l Frames [Uncompressed) j Cancel
Microzoft Yideo 1 - Q
Microzoft RLE

Microzoft H. 263 Video Codec

Microzoft H.261 Yideo Codec

|Indeo® video 5.04 \ R

a viewer position and a position that the viewer
is looking at, the point where the current view is
centered. SML gives you complete control over both
positions. You can set viewer and view center posi-
tion coordinates explicitly for each frame, or move
either position a specified distance or direction rela-
tive to the previous position. Either position can be
rotated around the other. You can also set either
position and then specify an azimuth angle, eleva-
tion angle, and distance
to define the other.

&5 CHTI.avi - Windows Media Player
Eile View Play Faworites Go Help

\
To record a movie from an

SML script, you must have
software capable of
encoding MPEG files (any
computer platform) or AVI
files (Windows platform
only). When recording
begins, a window opens to
allow you to select
compression options.

2, Radio g Music ¥ Media Guide

The pATHCHTL script
copies both 3D and 2D
views into each movie
frame. The viewer and
view center positions
are computed from 2D
vector lines that are
displayed in the 2D
view but hidden in the
3D view. The current
viewer and view center
positions are shown by symbols drawn into the 2D
portion of each frame after the views are captured.

WO o [3

> un

Movies created from these sample SML movie scripts can be downloaded from

http://www.microimages.com/promo/smimovies

page 35

Spatial Manipulation Language

Batch Import with SML

STEPS
M choose File / Open /
* SML File and select
SCRIPTS / RASTER /
IMPORT_SRTM.SML
M study the script
structure and comments
choose Insert / Class
scroll down in the list in
the Insert Classes
window to class
MieUSERDEFINEDRASTER
M examine some of the
other Mie classes
close the Insert Class
window

HE

You can use an SML script to automate repetitive
tasks such as importing tens or hundreds of data
files with the same format. TNTmips supports the
import or export of dozens of external file formats.
The program code needed to import or export each
of these formats is encapsulated in SML as a class
structure beginning with the letters "Mie". For ex-
ample, class MieGeoTIFF supports the import or
export of GeoTIFF images. The Mie classes are used
in conjunction with functions in the Import Export
function group that allow you to import to or export
from a specific object type (raster, vector, CAD, da-
tabase, or TIN). Class members for each Mie class
(or a parent class) allow you to set process param-

HiePCX

:izg:g"’m eters such as raster size, compression, vector
HiePOLARYECTOR topology type, and others.

HieRADARSAT
NieRASTER The script for this exercise performs a batch import
HieRESOURCE21 . -
HieSCANCADTHE of raw, ungeoreferenced surface height files pro-
HieSCANCADRLC duced by NASA's Shuttle Radar Topography
HieSDFYECTOR .. . h
ieSDTSDEH Mission (www.jpl.nasa.gov/srtm). The script uses
SIS the MieUSERDEFINEDRASTER class to import the
HieSIFCAD
HieSTHPLEARRAY elevation grids to rasters. Each height file is one
Hesocetiet il degree of latitude and longitude in extent. The script
HieSPANS . .

HieSPOT reads the latitude and longitude of the southwest
i tile corner from the file name and georeferences each
HieSUNRASTER imported raster by creating control points at the cor-
HieSurfer

HieSYGFILEVECTOR ners Of the raster.

HieTERRAHAR

HieTEXTYECTOR Four one-degree

LTI SRTM height tiles

HieTIFF . f

HieTIGERVECTOR (covering part o

HieTIH Ecuador) imported

HieTHFAST with the script in

:?E}:Eﬁgﬁﬂ:mk this exercise. The

1€ . .

HieTYDCDATABASE raw height grids

HielSERDEFTNEDRASTER include numerous

HielUSGSGSHAPCAD null (no data) cells

Hiel5G5GSHAPYECTOR (yellow in this

Some of the many SML
classes available to
automate Import /
Export tasks.

the

image) on slopes
facing away from

radar sensor.

page 36

Spatial Manipulation Language

SML Layer in Display

STEPS

=EGroup 1 = Group Controls

Group Layer Options

L=} i N

2] | e] o o

2L

The Add SML icon button

The standard display process (Display / Spatial Data)
supports the use of an SML script as a layer, just as
a raster, vector, CAD, or TIN object can be a layer.
An SML script layer can use flexible cartographic
drawing functions to create special map symbols and
neatlines.

The sample script ARrRow.smL is designed to draw an
oriented magnetic declination map symbol in a lay-
out. The SML layer should be alone in a group. It
determines the true north direction from the previ-
ous map group in the layout. Sample script
neatline.sml draws a neatline around a group, and

=Group 1 - Group View 1 [_15[x] InCIUdeS a'ddl_
Vien Tool Legendvies GPS Dptions wip | tional drawn
@|g = ol2/eealaEs lﬁilklgﬂ@l!lj items that you

can turn on by
removing the
comment char-

MN arrow.suL draws

an oriented map

S{\”‘bo' tthat acter (#) from

shows true

7 9 north and the_ relevant
magnetic north script state-
directions. ments.

=SHL Layer Cantrols

=l)
Zoon:| 1.0 Scale:| 2737 5f[17.55H 171.68E n

)

]

NEN

run Display / Spatial Data
and open a new 2D
Group

click Add SML in oy
the Group Controls @I
window

select the Script tab in
the SML Layer Controls
window and choose File
/ Open /[*.SML

select smL / ARROW.SML

in the Coordinates panel,
use the Projection button
to change the coordinate
system to Universal
Transverse Mercator

M click [OK] to close the

Layer Controls window

M examine the display,

Object Seript | Coordinates

File Edit Insert Syntax

then remove the
SML layer

add object _8siT
from the ce_comp
Project File in cB_pata
click Add SML and

+5
select smL / ﬁl
NEATLINE.SML

in the Coordinates panel,
set the coordinate
system to United States
State Plane 1927 and the
Zone to Nebraska North
click [OK] to close the
Layer Controls window

X

Help

Tine to drauwi <1 Second Z,

(=

the left,

n_angle =
-

The Script tabbed panel in the SML

Fill in paranetgs here...
RAngles are in Megrees fron vertical.
ative is to the right

.25 # Degrees to nagnetic north

Positive is to

=

Layer Controls window contains the —
interface for editing and running scripts.

/|class Group groups

is code nay have to be tueaked for anather layout.

%ha Eyeile m] e frem (i el e
#
¢

t assunes that the group you want is the one just
before the group with this script (in drawing order).

group = ThisLayer.group.Prevéroups |
=) I} P

The Coordinates panel lets you relate

the script layer to the map coordinates

o |

Cancel Help

of the other layers in the display.

page 37

Spatial Manipulation Language

SML and GeoFormulas

See the tutorial booklet
Using Geospatial Formulas
for a complete introduction
to constructing and using
GeoFormulas

STEPS

M remove the SML layer
from the display group

M click Add

Geoformula / Hzy?

Quick-Add ‘é‘

Geoformula

M select ceorrMLA /
BROV_UMN.GSF

M for input, select three
TM bands from the ca_t
Project File and the
SPOT_PAN image in the
ce_spoT Project File, both
in cB_DATA

GEOFRMLA/BROV_UMN.GSF
illustrates the dynamic
enhancement of low-
resolution TM imagery with
a high-resolution SPOT
image.

SGroup 1 - Group View 1

View Tool LegendViewm GPS Options

A GeoFormula layer is a computed display layer that
uses one or more input objects to derive a result for
display. It gives you away to apply SML manipula-
tions to objects “on the fly” rather than running
separate processes to prepare output objects for dis-
play. AGeoFormula layer contains a "virtual object™;
it does not create an output object that is saved in a
Project File. Instead, it creates a display layer that
releases all its system resources (such as disk space
and memory) when you are finished with it.

For example, red and infrared bands of raster imag-
ery can be combined to produce a Transformed
Vegetation Index (TVI). Of course TNTmips offers
a simple process that produces a TVI output raster
object from selected input objects if you want to re-
tain the TVI output for other uses. But if you just
want to view the TVI result and do not care to keep
the output object, you should use a GeoFormula dis-
play layer.

A GeoFormula script can be saved as a reusable file.
A GeoFormula layer can be combined with any num-
ber of other layers in the TNT display
process to create a complex visualiza-

0[]
Help

@|w| D & &2 2|@/C| 0| @RS [@ N B o 8]
3 e e -

tion of multiple geospatial objects.

The GeoFormula feature is primarily
provided for dynamic visualization
tasks in the display process. You can
also run a separate GeoFormula pro-
cess (Interpret / Raster / Combine /
GeoFormula) to create permanent out-
put objects for other uses.

Ob jects | Yalues Script |I]utput | Previeu

- sun=TH5_Yalue+TH4_Value+THZ_Yalue

Output _Red=TH5_Value/zun*SPOT_Yaluex3

Views| 1.0 Scale:| 50456 _}_{l@]

160176.63 <+

Output_Green=TH4_Yalue/sun*SPOT_Yaluex3

Tine to draw: 1 Second

Output_Blue=TH2_Yalue/sun=5P0T_Yaluex3

M close the display group when you have completed this exercise

page 38

Spatial Manipulation Language

Script Objects and Encryption

So far you have worked with SML scripts that have
been saved as independent text files with the SML
file extension. These are 1-byte text files that can
be opened with any text editor. If you do edit a script
file with another editor, be sure to save it with the
SML extension.

An SML script also can be saved as a script object
in a Project File (use File / Save As / RVC Obiject).
This allows you to put input, output, and script ob-
jects all in the same file if you find this more
convenient. Another advantage to storing a script
in a Project File is the ability to encrypt a script
object. You may want to distribute your scripts to
others but still protect your development efforts and
proprietary algorithms. An encrypted script object
can only be run by authorized TNTmips users and
cannot be viewed or edited by anyone (including the
creator; always keep an unencrypted copy of the
script for reference or further development). You
can allow an encrypted script to be run by any
TNTmips user or limit its use to computers with a
specific software license key number. You can also
choose to require a password for running the script.

Help
j

=Spatial Hanipulation Language

Filel Edit Insert Syntax

Hew

d raster fron elevation Ras
levation raster CB_TH.R¥C
ob ject YIEHSHED.RYC / YROA

Dpen

Save

STEPS
M select File / Open /
* .SML File and choose
SML / VIEWSHED.SML
M select File / Save As /
RVC Object (Encrypted)
M create a new Project
File and SML object as
prompted
select an encryption
password in the
Encryption Options
window
if you are not using
TNTlite, use File / Open
to select your encrypted
script (the SML window
then shows only an
encryption message)

NOTE: Alicense key is
required to run an encrypted
SML script object. Thus
encrypted scripts cannot be
runin TNTlite.

=Encryption Options 1 | E3
Require License Key

“* Any VYalid Key

+ Specific Key: I 0

Save As #.5HL File...

RYC Object...
RYC Object {(Encrypted},..
=

ez Yowiber Izen...

fdd Youil Hoosouroos, ..

|

" Require Password

Fassuord:l********
Yerifyz I********

Debug...

Run. .. # use to hold line point

Exit

raster Rin, Rout:
vector V3

=

i

=
Run... I Canstiink

0K | Cancell Help |
=l Spatial Hanipulation Language MmE]
File Edit Insert Syntax Help

Use the Save As / Encrypted option to create an
encrypted copy of the script in a Project File. If
you open an encrypted script in the SML window, it

#

This script is encrypted,

S T—

=

shows only an encryption message. IMPORTANT:

Always keep an unencrypted copy for editing.

Run,.. | ot

page 39

Spatial Manipulation Language

APPLIDATs

STEPS
M choose Process / SML /

H B @ 8 H

=

TNT Benchmark SML script

=5HL benchnarks

Run

select scriPTs / APPLIDAT /
BENCHMRK

click the Instructions icon
button on the toolbar
press [Close] on the
Help window

click the TNT Benchmark
icon button

try some of the
benchmark processes,
then press [Exit]

click the Exit button on
the toolbar

Benchmark APPLIDAT
toolbar

M=

ik
/

2
/ |

Instructions TNTview Exit

select File / Open / RVC
Object in the SML
window

M select smL / sSMLLAYER.RvC /

ARROW

M select File / Edit Toolbar

Icon

M in the Select Bitmap

Pattern window, click the
Set button and choose
the Advisor set from the
list

select the "gold" N
icon illustrated b
and click OK @
click [Yes] to
confirm your choice in

the Verify dialog box

You can use SML to create self-contained, turnkey
geospatial application products called APPLIDATS.
ANnAPPLIDAT can include an SML script or a series
of scripts along with the geospatial data to be pro-
cessed. Since data and scripts are bundled, they are
loaded together automatically when the APPLIDAT
is run. There is no need for the user to navigate and
load the data manually. An APPLIDAT is therefore
ideal for providing data with custom processing ap-
plications to users who are not familiar with the TNT
interface.

An APPLIDAT includes one or more SML script
objectsina TNT Project File that has been renamed
with the .SML file extension. Users can run an
APPLIDAT by double-clicking on the file or by us-
ing a desktop shortcut. Running an APPLIDAT
launches TNTview (with the standard interface hid-
den) and opens a custom toolbar with an icon for
each included script. Icon buttons to open the stan-
dard TNTview and to Exit the APPLIDAT also are
included automatically. You can write the compo-
nent scripts to use data stored in the same SML
Project File or in an accompanying standard Project
File in the same directory.

When a script object is created in a Project File, TNT
automatically assigns it a default icon subobject,
which you may edit or change for a different icon.
When the APPLIDAT is launched, script icon but-
tons are added to the toolbar from the left in
alphabetical order of the script names. If your
APPLIDAT includes several scripts that should be
run in a defined order, name the scripts so the alpha-
betical order of their names follows the defined
processing sequence. A script object's description
is used automatically as the ToolTip for its icon but-
ton.

page 40

Spatial Manipulation Language

Providing APPLIDAT Instructions

SML lets you write APPLIDATSs that have a discov-
erable interface. Your users need not be trained in
(or even aware of) the TNT products. All the in-
structions needed can be discovered the first time
the APPLIDAT is used, or easily rediscovered after
a lapse of time. Simply include in your APPLIDAT
a copy of the HeLp.sML script from the BENCHMARK
APPLIDAT. This script creates a dialog window to
display HTML-formatted text and illustrations. The
HTML instruction set is stored as a subobject of the
HELP.SML SCript.

An instruction set is easy to create and maintain be-
cause you can use any editor that supports the HTML
format. Thus you can write your instructions in a
program such as Microsoft Word and use its Save
As... option to save the file in HTML format. To
associate your new help file with the APPLIDAT,
edit the HeLP script in the SML script editor and se-
lect Add Text Objects from the File menu. When
you select your HTML file, TNT copies it to a
subobject of the script.

= 5patial Hanipulation Language

NOTE: to open script objects
in an APPLIDAT Project File
(.SML file extension) in the
SML editor, you must use
File / Open / *.SML File.
When you select an SML file
that is actually a Project File,
a Select Object window
opens to allow you to select
a script object from within the
file.

STEPS

M choose File / Open/
*.SML File in the SML
window

select BENCHMRK.SML in
the Select File window
select the Help script
object in the Select
Object window
examine the script
structure and comments

]

]

You can copy this

File Edit Inzert Syntax Help
% | Help script to
your own
¥ Lo APPLIDAT file
A sanple script that shouws how to create a sinple dialog with HTHL and use it directly
: help and a close button to create your

class XnForn forn:
class ¥nPushButton button;

The function that will be called when the

—

“close" button is clicked

Instructions or
Help window. An
instruction set
won’t become

% Create a dialog. The string passed here
Ewventually it will pull the title out of
forn = CreateFornDialog{"Help"};
forn.height = 4003

forn,width = 500;

&

iz the title of the dialog.
the <title> tag in the HTHL

separated from
its APPLIDAT
because it is
bundled with the

% Create a close button

Called when the user clicks the “"Close™ button,
proc cbClose{} {

Just close the dialog.

other resources.

DialogClose(forn}: # Hill cause a popdown,causing cbPopdown to be ca

’ il
I~ i =
II Run,.. I {anval

page 41

Spatial Manipulation Language

BIOMASS2 APPLIDAT

Biomass

Mapping

Instructions

=Sinple Turnkey Product

{7

Asset 3D
Management Simulation
STEPS

M select Support /

NEN

Maintenance / Project
File from the TNTmips
main menu and examine
the contents of
BIOMASS2.SML in the scriPTs
| ApPLIDAT directory

exit from Project File
Maintenance and select
Process / SML / Run
choose Biomass2

click the Instructions
icon button and read the
instructions

click on the Biomass
Mapping icon button,
define an area to map,
filter the result, and
convert the result to a
vector

M exit from the Biomass

Mapping window

M run the Asset Mapping

and 3D Simulation
applications

exit from the Biomass2
APPLIDAT when you are
finished

The Biomass2 APPLIDAT was written by
Microlmages to provide an example and prototype
of a turnkey APPLIDAT product. It il-
lustrates how an APPLIDAT can let the
user carry out a series of operations on
the input data and automatically pass
intermediate products along to the next
operation. In this example the application would
allow a farmer to determine crop biomass for any
designated area from a color infrared image, dis-
play farm assets over the image and biomass map,
and display a 3D perspective view of the image and
biomass map. The Instructions for the BiomAss2
APPLIDAT provide a more detailed overview of
each operation.

The APPLIDAT file (Biomass2.smL) includes three
processing script objects: Biomass (Biomass Map-
ping), Pinmap (Asset Management), and View3D
(3D Simulation) that are designed to be run in that
order (note the alphabetical order of the script names
and the positions of their icons in the toolbar). In-
structions for the product are contained in the script
called About (note that the script itself contains the
HTML formatted instructions, rather than using an
HTML subobject). All of the input data are in the
APPLIDAT file. Spatial objects produced by the
APPLIDAT are stored and retrieved as needed in an
accompanying Project File BiomAss.Rvc.

After you have run the APPLIDAT, you should ex-
amine the structure of the component scripts. Each
script contains code to create its dialog window and
controls, callback procedures assigned to those con-
trols, and instructions for input and output of data.
You can use these as models in developing your own
turnkey APPLIDAT programs.

page 42

Spatial Manipulation Language

Tool Scripts and Macro Scripts

Tool Scripts and Macro Scripts are specialized SML scripts launched from a View
window that can automatically access and operate on the objects in the view. You
can create tool scripts or macro scripts that enable any user to perform custom
procedures on spatial data layers loaded into the View. You can set up a general-
purpose tool script or macro script to be available from any type of 2D View
window or save a data-specific script with a particular group or layout. Scripts
saved with a layout that becomes part of an atlas are also available for use in
TNTatlas. Every View window offers menu selections that let you easily add and
TR ===y delete Tool scripts and Macro
scripts (Options / Customize).

Vieu Tool LegendYiew GPS Options | Hacros

210 -5 _I_I_I_I_I_I‘ s

+ Differential Zooning

N
Tool scripts and macro scripts
can be launched from icon
buttons on a View window's
toolbar or from the Tool and
Macros menus.

. ’ Positional Accuracy -
L 4 * Show Scale/Position
© Show Status Line
Resize to,..
Position Report 1 - [

Position Report 2 - |-

GeoLock Settings...

Custonize " Hacro Scripts...

““ﬁ‘_i"s Too serspte... | FOr the script writer, macro
£ : ' s scripts and tool scripts pro-
vide a streamlined way to provide custom processing capabilities that require
visual interaction with the spatial data. To do this in a standard SML script, you
have to provide the code to create and manage the View window and its contents.
But because macro scripts and tool scripts are invoked from a View window, most
of that management is taken care of automatically, and you can focus on coding
the custom processsing itself.

Macro scripts and tool scripts:

* are executed from an icon button on a View window toolbar or from a menu;

« can access features of the current view, such as layers, extents, projection,
selected elements, zoom factor, scale, and styles;

* can operate on objects in the current view or objects containing the same area;

« can add a newly-created layer to the view;

* can start an external program and provide it with data derived from the current
view.

Atool script invokes a drawing tool and/or a dialog window (defined by the script-
writer) that allow the user to interact with the spatial data in the view window.
For example, the user could outline an area or select particular elements to be
processed. A macro script does not allow such graphical interaction, but can be
set up with a drop-down menu that provides program options.

page 43

Spatial Manipulation Language

Macro Script Setup

Macro scripts can be launched from the View window's Macros menu (which
appears once you have installed a macro script) or from an optional icon button
on the toolbar. To add a macro script, choose Options / Customize / Macro Scripts
from the Viiew window, which opens the Customize Macro Scripts window. If you
want to add an existing script, click on the Add icon button to open the Select File
=== window so you can navigate to the
script and select it. To create a new
macro script, click on the New icon
button. A Query Editor window
opens with a default script contain-
ing a list of predefined symbols that
| You can use in the macro
wetp | Script. The Query Editor
Al window includes all the
script-creation and editing
features of the standard
SML window.

= Custonize Hacro Scripts

Sample macro scripts

can be found in the

New \ Properties MAcrscr subdirectory in
Add the scripTs directory.

= Query Editor

Script Edit Insert Syntax

Yiew HacroScript

#

The following synbols are predefined
class GRE_YIEH Yieuw fusze to access the vieu the scri|
class GRE_GROUP Group fuse to access the group being w.

class GRE_LAYOUT Layout fuse to access the layout being *
string HenuChoice$ fwill contain the text from the :

#
#
#
#
#
#
Once you have created or added the macro script, the Macro Script Properties
window opens. You can choose whether the script is accessible from all Views of
the current type or only from the current saved group or layout. Choose Simple
from the Type menu to have your tool script execute automatically without further
input from the user. Choose Menu if you want drop-down choices presented
from the Macros menu entry and the icon button; the Menu Choices text field
then becomes active so you can enter the menu choices needed for the script.

Use the Icon toggle button to indi-

cate whether a script icon button

appears on the View window toolbar;
click on the default icon to open a
dialog to select an appropriate icon.
The text you enter in the Name field
is used for the menu entry in the
Macros menu and for the scripticon
button's ToolTip.

The Test button at the bottom of
the window lets you run your script
without closing the setup windows.

Use with:

Sinple
A1l 2D group views Henu
Type; Henu Icon:@l
Nane: |Znnn h\ Scale

Henu Choices

The Use With ‘menu options vary depend- i
ing on the type of View: Group, Display
Layout, or Hardcopy Layout. You can
install the macro script for all windows of
that type or only the current one. i

=

0k | Cancel | Edit...| Test | Help |

Click OK in the Macro Script Properties and Customize Macro Scripts windows
when you are done adding, developing, and/or testing your script.

page 44

Spatial Manipulation Language

Sample Macro Script: Zoom to Scale

The Zoom to Scale macro script (zoomTo.sML) is one
of several sample macro scripts are provided in the
MACRscCR subdirectory of the scripTs directory. This
macro script lets the viewer redisplay the View win-
dow at one of several map scales selected from the
script button's dropdown menu (or the script's
submenu in the Macros menu cascade). For proper

script function, the objects in the view window must | &

be either georeferenced or scale-calibrated.

The scale menu selections are not predetermined by
the Zoom to Scale script. When you install the
script, you are free to set up the menu choices with
the range of scale selections most appropriate for

your data. The script accepts scale input from the | &

menu as either map scale or ground dimensions. If
the menu entry is purely numeric, it is interpreted as

the denominator of the map scale fraction. Forex- | &

ample, 12000 is interpreted as a map scale of 1:12000.
If the menu entry is in two parts separated by a space
(such as "1 mi"), the first part of the entry is inter-
preted as a ground dimension in miles.

M click the Open

STEPS
M run Display / Spatial

Data

icon button on
the Display toolbar and
choose Open Group
from the dropdown
menu

navigate to the smL
directory and select
GRourPzoomTo from the
VIEwsHED Project File
use the installed Zoom
to Scale icon button on
the View window to
vary the zoom

choose Options /
Customize / Macro
Scripts from the View
window

use the Properties and
Edit icon buttons to
examine the settings
and script

M close the group

(This portion of the script can be easily ~ o
modified to accept dimensions in kilo- Tupa Hona | P Toon: By
meters or other distance units.) The Hane: [Zoon to Scale
script then performs the necessary cal- | Menu Choices
culations and sets the new map scale EEEEO set up scale menu choices m
for the View window. 1000 that are most appropriate

oo . for your spatial data. -
The predefined macro script variable | =
MenuChoi ce$ is used to represent the & e e = |
user's selection from the macro script
menu button. For numeric input, this M M
string must be converted to a nuUMeric ns_tacros | Help 5]
value using the St r ToNun() func- [@Z=ateSealel s - I8 ;i'm -

tion.

o \E'Hw. v 4000
b 2000
; \ 1000

1 ni

4000
2000

1000
\1..1

0.5 ni

0.5 ni

More about the Zoom to Scale macro script is available in an online document at

http://Iwww.microimages.com/relnotes/v64/zoomto.pdf

page 45

Spatial Manipulation Language

Sample Macro

O[]
Help

60/ W

= Query Editor

Script Edit Insert Syntax

Script: Snapshot

The Snapshot script is a simple example of a macro
script that processes data from a View window and
launches an external application. The script captures
a screen snapshot of the view window and exports it
to the image file format you have chosen from the
script button's dropdown menu. The script then
launches the application program that you have pre-
viously registered with your operating system to open
that file type.

===1 The Snapshot script has been
wap | Written to create specific file for-

Export and open the snapshot.
if (HenuChoiced == "JPEG") {

CloseRaster{ras);
JpegHandle.exportConpressFactor = 753

3
else if {(HenuChoiced == "PNG™"} f

CloseRaster{ras);

3
else if (HenuChoice$ == "BHP™"} {

CloseRaster{ras):

3

OpenRaster{ras, rast.¥Info.Filenane, “snap");

Convor tConpTolanp{ras, rast.STnfa.Filonane, snapa’s 2433 up choices for the script button

DpenRaster{ras, rast.$Info.Filenane, “snap“);

ConvertConpToConp{ras, rast.$Info.Filenane, “snapa”, 24); mUSt eX&Ctly matCh the CharaC'

- mats: JPEG PNG BMP,PCX, GIF,

OpenRaster{ras, rast.$Info.Filenane, "snap"}; TI FF, and ASC” fileS With either

ConvertConpToConp{ras, rast,tInfo.Filenane, "snapa", 2d):

TXT or DOC file extensions.

ExportRaster(jpegHandle, _context.ScriptDir + "snapshot. jpg”s 1 When you add th|s macro Script

RunAssociatedApplication{_context.ScriptDir + “snapshot. jpg"};

to a View window, you must set

EwportRaster(pngHandle, _context,ScriptDir + “snapshot,png”, r menu from this set of formats.

RunfAssociatedApplication{_context,ScriptDir + “snapshot,.png"};

The text for each menu entry

EnportRaster(bnpHandle, _context,ScriptDir + “snapshot.bmp®, r ter string expected by the script,

RunfAssociatedApplication{_context,ScriptDir + “snapshot,bnp"};

=l I

41 including case (for example,

| o«f| JPEG rather than Jpeg).

Saved snapshot of View
window with raster
background and several
vector overlays.

The script initially saves the snapshot as a tempo-
rary color composite raster object. The bit depth of
the composite is determined by your computer's dis-
play settings. The script segment for each file format
performs a color conversion to the color depth ap-
propriate for that format prior to export.
The output file is automatically saved in
the same directory as the script, then the
file's associated application is launched.
These operations make use of a class vari-
able _cont ext, which specifies the
internal context information for the script.
Class member _context. ScriptDir
specifies the directory in which the script
is found.

page 46

Spatial Manipulation Language

Tool Script Templates

Tool scripts can be run from an icon button on the

View window toolbar or from the Tools menu. To
add a tool script, choose Options / Customize / Tool
Scripts from the View window in any TNT process
that has a View window. Making this selection opens

A number of class and
numeric variables are
predefined and available for
immediate use in tool
scripts.

the Customize Tool Scripts window, which is nearly

identical to the Customize Macro
Scripts window discussed previ-
ously.

To create a new tool script, click
on the New icon button to open
the Query Editor window, which
shows the tool script template.
The template lists a number of
predefined symbols and values
that you can use in any tool script.
The predefined values include the
Xand 'Y coordinates of the screen
cursor within the view (in pixels)
and values that record mouse but-
ton actions.

Additionally, the tool script tem-
plate includes skeletal definitions
of procedures likely to be used in
a tool script. These include pro-

= Query Editor

Script Edit Insert SyntAx Help

View ToolScript

[J
The following synbols Are predefined
class GRE_VIEH Vieu fuse to access the wieu the t
class GRE_GROUP Group fuse to access the group beir
class GRE_LAYOUT Layout fuse to access the layout bei
nuneric ToolIsActive Hill be 0 if tool is inactive

The following values are also predefined and are valid when the
functions are called which deal with pointer and keyboard event| |
nuneric Pointerx Pointer X coordinate within wies
nuneric PointerY
nuweric ShiftPressed
nuneric CtrlPressed
nuneric LeftButtonPressed

Pointer Y coordinate within wies
1 if <shift}> key being pressed
1 if <ctrl> key being pressed or
1 if left pointer button pressec
numeric RightButtonPressed 1 if right pointer button presse
nuweric HiddleButtonPressed 1 if middle pointer button press

A5 A A AE 4 AE A B A I OE 4 OE 4 AE A

The following script functions will be called (if used in the s
the appropriate action or event occurs as described in the conr
To use a function, unconnent the lines containing the "func® de
and ending brace "1’ by removing the leftnost "#7 on the line &
function code between the two lines,

Called the first time the tool is activated,
If the tool inplenents a dialog it should be created {but not ¢
proc DnInitialize {} £
% 3 # end of OnInitialize
Called when tool is to be destroyed, will not be called if tool
If the tool inplenents a dialog it should be destroyed here,
proc OnDestroy () £
3 4 end of OnDestroy
Called when tool is activated,
If the tool inplenents a dialog it should be "nanaged” (displa.
proc DnActivate (2 £ il
=l] =
| x|

cedures used the first time a tool is activated; when

the tool is destroyed; when the tool is activated and
deactivated; when the tool is suspended (during re-
draw) and resumed (after redraw); when the left, right,

Tool Script icon buttons
appear to the left of any
Macro Script icon buttons on
the View window toolbar.

or middle mouse button is pressed or released;

when the cursor moves without a button press;
when the cursor moves with a button press; when
the cursor enters or leaves the View window; and
when the user presses a key. To create your
script, remove the comment characters (#) to the
left of each procedure definition you need and
add code to specify the desired action to be car-

ried out by that procedure.

B¢

macro script buttons

page 47

Spatial Manipulation Language

Sample Tool Script: Select Point

NOTE: the next three
exercises let you use tool
scripts that were saved
with a Display Group.

STEPS
M click the Open

The point selection script (PoinTsEL.sML) illustrates
how to set up a tool script that lets the user interac-
tively select elements from a vector object in the
View window. In this case the script selects the clos-
est point element when the left mouse button is

icon button on
the Display toolbar and

choose Open Group

M choose TooLcroup from
the TooLs Project File in
the swmL directory

M press the Select
Point toolscript _':‘I
icon button on the
View window toolbar

M click [OK] in the
message window, then
left-click near a point in
the View to select it

=fuery Editor

Script Edit TInsert Syntax

pressed; this action is controlled by the definition
for the OnLeftButtonPress() procedure. This simple
script merely selects the point, but the button press
procedure could be expanded to use the selected
point for further processing, such as writing the map
coordinates of each point to an external file.

Because a toolscript is executed interactively from a
View window, all processing is carried out by script
procedures executed by mouse actions or by ac-
tions carried out in dialog windows created by the

script. The definitions you pro-

L vide for the predefined procedure

Help

—_—
POINTSEL,SHL - Allous user to select and highlight a vector p

Created by: Hark Snmith
Host recent revision: 8-2003

The following symbols are predefined
class GRE_YIEH Yiew
class GRE_GROUP Group
class GRE_LAYDUT Layout

#
#
#
4
4
#
#
nureric PointerX

nuneric PointerY

Yariable declarations
class GRE_LAYER_VECTOR vectorlayer;
class Vector targetYector:

class GRE_GROUP activegroup;

Checks layer to see if it is walid,
func checklLayer{) £
local nuneric valid = trues

Get names layers if usable.

fuse to access the wiew the
fuse to access the group bei
fuse to access the layout be

The following values are also predefined and are valid uhen th
functions are called which deal with pointer and keyboard even
Pointer X coordinate within vie
Pointer Y coordinate within vie

If not output error nessages.
Get nane of active layer if it is usable,
i

- names can call other functions
and procedures that you define
elsewhere in the tool script. In
the point selection script, for ex-
ample, the OnLeftButtonPress()
procedure calls a user-defined
| checkLayer() function that checks
to make sure that the active group
contains a layer, and that the layer
is a vector object. The Onlnitialize
procedure also calls a procedure
cbGroup() to identify the active

If not output an

if ¢ activegroup,Activelayer,Type == "" }
Popupliessage{ "Group has no lagers!" };
valid = false;

else if (activegroup.fActivelayer.Type == “Yector™ } {
vectorLayer = activegroup.fActivelayers;
DispGetVectorFronLayer{ targetVector, vectorLayer };
if (targetVector,¥Info,NunPoints <1 } £
Popuptessage{"Ho points!™); i
|] I

group in a multigroup layout. This
code generalizes the tool script for
use in either a group view or lay-
out view window.

The poINTSEL script is one of a number of sample tool scripts that are
provided with the TNT products in the TooLscr subdirectory of the scripTs
directory. Other sample tool scripts in this directory are described on the
following pages. You can use components from any or all of these scripts
to create the custom tool you need for your specialized application.

page 48

Spatial Manipulation Language

Sample Tool Script: Select Element

The element selection script (ELemseL.smL) allows | steps K I
the user to select point, line, or polygon elements | & press the Select
from a vector object in the View window. The selec- Element tool script icon

. button on the View
tion mode is set using radio buttons on a dialog window toolbar

created and opened by the script. The user chooses | & on the Select Element
whether a left-click of the mouse in the view selects window that appears,
the closest point, closest line, or enclosing poly- gﬁg;gg ﬁi'shb?m;”z fto
gon. The script merely selects the element, but the element to seleé/tp
button press procedure could be expanded to ap-

ply further processing to or using the element. RSt M

Since a tool script creates a custom interative tool | Aetive Lagers [oRvIDCTTY
on the View window's toolbar, you can switch back | Se1eets

and forth between the custom tool and other inter- | ** Closest Point

active graphic tools, such as the Zoom Box. To | =« Clesest Line

deal with these potential switches, tool scripts in- | .. Enclesing Polygon

clude prenamed Onlnitialize() and OnActivate()
procedures. The Onlnitialize() procedure is called
only the first time the tool is activated in a viewing 7 left-

0K | [Zanc:ell Apply |

click in the View

session; if the script uses a custom dialog, it should window to select an

be defined within this procedure (but not opened). element

The OnActivate() procedure is called each time the

tool is activated, so the code to open
the dialog window should be part of | _Seiet Edit Insert Suntax et

. . ey # Called when user presses “left” pointer/mouse button. 3
this procedure definition. e Qe ©6

)) I (chezki:g:ﬁ(g) §ager is not valid, don o anything.
Because tool scripts use predefined Toeel choms POTNTSN points
variable and function names that are focal muneric elenentins
. - # Find cursor position in screen coordinates and trans
automatically recognized by the TNT 3 nop coorgi,_.agesxm active Layer.
. . point.x = PointerX;
Display process (but only in that point.y = Pointary;
context), script syntax should be buint = TranaPointeDipaint, ViouorTrametlopTovioutVios
checked only in the Query Editor iF {node® == “point™) {

. d df th C tomize :%e:::;:::t:uiigdg.}oizzfuint(target\"ectur, point.x
window (_)pene rom N € us . vectorLayer.Point.HighlightSingle(elenentHun); | |
Tool Scripts. The main SML editor !
window will return syntax errors from L Lementun = FindClosestLineCtargetioctar, point.ss

. . if {elenentHun > 0) then
valid tool scripts. , vectorLayer. Line HighLightSingle(elenentiiun)3
else if (modet == "poly™ {

elementHun = FindClosestPoly{targetVector, point.x,
if telenentHun > 0 } then

Consult the Tutorial booklet Building , veetorLayer.Poly Highl ight Singleelenenthun)
Dialogs in SML for information on — . M
creating custom dialog windows. 3

page 49

Spatial Manipulation Language

Modify and Extend Tool Scripts |

STEPS
M press the Line by ﬁ

Attribute tool script icon
button on the View
window tool bar

M click [OK] in the
message window, then
left-click in the View
window to select a line
element; all lines of the
same type are also
selected

The easiest way to develop a new tool script is to
find a similar existing script (your own or one of the
sample scripts described here) and modify and ex-
tend it. That's what we have done to create the tool
script you use in this exercise. Script TLINBYATT.SML
selects the line closest your mouse click, then high-
lights all lines that have the same attribute. This
script was created by modifying the PoINTSEL.sML
tool script you used previously.

The main modifications required were in the defini-
tion of the OnLeftButtonPress() procedure, the code
carried out when you press the

g

5
-
.

N ?7 left mouse button. This pro-
= / J cedure is excerpted from each
|

script on the following page.
\ A A The procedure was first modi-

v

]
LA X

fied to find the closest line

rn_‘ 1

A A
F 7
g

rather than the closest point,

then to get the attribute value
for that line from a particular

gsl
rU_

. database field and store it as a

N
£
AR AN

cedure then loops through all

L BT

A string variable. The new pro-

lines in the object to check their
L

/

U

the element numbers of match-

] —ﬁ value for that attribute, stores
1|
ing lines in an array, then uses

é’@%\?:w

B \ﬂ/“’—“ the array to highlight all of the

All lines representing railroads selected by

matching lines in the View win-

one mouse click next to one of the lines. dow. The procedure could be

M close the Display Group
when you have
completed this exercise

modified further to check ad-
ditional attribute criteria, to extract the selected lines,
or apply other processing.

While poinTsEL.sML is generic, and will work with
any vector object containing point elements,
TLINBYATT.sML is tailored for a specific type of vector
data: it works with any vector object imported from
the U.S. Census Bureau's TIGER line files.

page 50

Spatial Manipulation Language

Modify and Extend Tool Scripts Il

Excerpt from POINTSEL.SML
proc OnLeftButtonPress () {

If the selected layer is not valid, don't do anything.

if (checkLayer()) {
Set local variables
local class POINT2D point; Procedure in poinTsEL.sML that is executed when
local numeric elementNum; the left mouse button is pressed. Lines in red

needed to be modified to create the line

Check point. selection script, and some lines were added.

point.x = PointerX;
point.y = PointerY;

point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, vectorLayer.Projection, 1));

elementNum = FindClosestPoint(targetVector, point.x, point.y, GetLastUsedGeorefObject(targetVector));

if (elementNum > 0)
vectorLayer.Point.HighlightSingle(elementNum); # highlight single point

}
} # end of OnLeftButtonPress

Excerpt from TLINBYATT.SML
proc OnLeftButtonPress () {
If the selected layer is not valid, don't do anything.

'f(ihgcelﬁggzrg;i{ab,es Procedure in TunBYATT.SML that is executed when
local class POINT2D point; the left mouse button is pressed. Lines in blue
local numeric elementNum; were added and lines in red were modified to
local string att$; create the line selection script.

local numeric line;
local array numeric elemnums[0]; ~ # array to hold element numbers of lines matching target attribute
local numeric count = 0;

Check point.
point.x = PointerX;
point.y = PointerY;

point = TransPoint2D(point, ViewGetTransViewToScreen(View, 1));
point = TransPoint2D(point, ViewGetTransMapToView(View, vectorLayer.Projection, 1));

elementNum = FindClosestLine(targetVector, point.x, point.y, GetLastUsedGeorefObject(target\ector));

if (elementNum > 0)

att$ = targetVector.line[elementNum].Class_Codes.CFCCS$; # get attribute value of line
for line = 1 to NumVectorLines(targetVector) { # check attributes of all lines
if (targetVector.line[line].Class_Codes.CFCC$ == att$) {
count +=1; #if match, increase the array size
ResizeArrayPreserve(elemnums, count); # and add element number to it.

elemnums[count] = line;

}
vectorLayer.Line.HighlightMultiple(count, elemnums); # highlight all lines with target attribute

}
} #end of OnLeftButtonPress

page 51

Spatial Manipulation Language

Sample Tool Script: Raster Profile

| The Raster Profile tool script (RAsTPROF.SML) provides
a line tool that records and plots a profile of the ras-

ter cell values along a line drawn by the user.
Raster: Tassajara The target raster for the profile must be the
69“ active layer in the view, and x-y positions
for the values are recorded in raster coordi-
nates (column and line number). Although
the profile plot is the end result in this ex-
o ample, the script can be modified to convert

228, 173 534,188 | positions to map coordinates, apply addi-

tional processing to the profile values, or write them
out to a text file.

o]]
Help

EINNEBRELT 14 A portion of the Onlnitialize() procedure in the script
gl | invokes a standard interactive line tool:

tool = Vi ewCr eat eLi neTool (Vi ew) ;
Tool AddCal | back(t ool . Appl yCal | back,
cbTool Apply);
(The variable t ool was previously declared as a
member of class LineTool.) The procedure
cbTool Appl y(), which acquires the profile, is

|

called when the tool is applied
Script Edit Insert Syntax Help by a right-mouse-button press.
& RASTPROF, SnL This linkage is set up by the sec-
Created by: Hark Snith .
: Host recent revision: 8-2003 Ond statement In the eXCerpt
R he racter Hate oo the nckion reston.atong.che taee-and tnen's| | ADOVE, Which adds the proce-
the profile of the raster along the line, d ure name tO th e tO 0 I |S

The active layer nay not be a conposite raster,

ApplyCallback list. This struc-
ture dispenses with the need for

This script requires THTnips version 6.6.

The following synbols are predefined

A A A A A A

Fia22 GREROUP eoup fuee o sccaes the group being| | SEPArate OnRightButtonPush
212221;:é2r:e$i::?tiuns procedure.
class LineTool tools .
e D The script also demonstrates
D B OB how the result of an action can
Siring vostertanass o be shown graphically in a win-
nuneric doGraph, hasHullj; .
array nuner;cpualueuoooooo]; dow created by the script. The
array nuneric draw[1000000]13
T0E) TR G code that draws the graph axes,
o TG e . i ;
mamr i enfot auithontiomes labels, and profile is contained

class POINT2D startpoint;
class POINT2D endpoint;

in the procedure cbRedr aw()
S : “wf defined in the script.

)

Spatial Manipulation Language

Sample Tool Script: Area Statistics

The Area Statistics tool script (RecsTaTs.smL) Shows
how you can create a custom tool to let the user draw
a polygon in the view window, convert the polygon
to aregion, and use the region to operate on another
object. In this example, the region is used for the
simple task of extracting statistics from araster layer
in the view. But the script could be modified to per-
form many other functions, such as creating a mask
raster or extracting elements from a vector object.
The region operations are not restricted to layers in
the view; you can operate on any georeferenced ob-
jects that overlap the defined region.

This script operates on a raster object that is the ac-
tive layer in the view. In the example shown here,
the polygon is drawn on an image layer overlying
the active layer, which contains an elevation raster.
Using the region defined by the polygon tool, the
script computes the number of cells, number of null
cells, minimum, maximum, mean and standard de-
viation of the included raster values, and the area,
perimeter, centroid location, and surface area of the

MWk

=Region Statistics
Raster: DEH

Cells: 31599

Hull Cells: O

Hininun: 256,00

Haninuni 671,00

Hean: 370.14

Standard Deviation: 84,43
Area; 25264213,28
Perineter: 29127.57
Centroid: 217379,12, 3977252,07
Surface Area: 25612527.40

Distance Units: neters —

firea Units; square meters |

Save fs... Close

region. (Statistics can be com-
puted for any type of grayscale
or binary raster, but not for com-
posite rasters or RGB raster
layers.) The statistics are shown
in a Region Statistics dialog win-
dow created by the script. The
script can convert distance and
area values to the units selected
from option menus on the win-
dow. The statistics can also be
saved to a text file.

M=
Help

= fQuery Editor

Script Edit Insert Syntax

REGSTATS,SHL - Allows user to select an area of a non-conposite |-
The script then outputs the nunber of cells, nunber of non-null
nininun, naxinun, nean, standard deviation, area, perineter, cen
and surface area over that region. The user may choose any dista
area units for the output to be displayed in.

Pequires THTnips version 6.4

The following symbols are predefined
class GRE_VIEH Vieu fuse to access the vieu the to
class GRE_GROUP Group fuse to access the group being

Variable declarations

class XnForn forn, buttonRow;

class XnSeparator linel, line2;

class HdispRegionTool tool;

class GRE_LAYER rasterlayer:

class Raster targetRaster:

class XnDrawingfrea daj

class GraphicsContext gcji

string rasterMamefs

class PushButtonlten saveButton, closeButton;
class XnDptionHenu distHenu, arealenus
nuneric min, max, nean, stdDev, count, cells, surface, area, perin
class POINT2D centroid:

nuneric distScale, areaScale: ¥
=] =
|Syntan Dk 0K

More about the Area Statistics tool script is available in an online document at

http://www.microimages.com/relnotes/v64/polystats.pdf

page 53

Spatial Manipulation Language

Sample Tool Script: Region Statistics
The Region Statistics tool script (REGSTATP.SML)

Options etp | demonstrates the design for a script that lets
the user select polygons from the view window,
creates a region from the selected polygons, and
uses the resulting region to perform an action
on another object. The example task for this
script is the same as for the Area Statistics tool
script: compute statistics from a raster layer in
the view. Like that script, however, you could
rewrite the cbTool Appl y() procedure to per-
form different types of operations on other
objects.

e This script lets you select one or more poly-
e gons from the top layer in the view (and checks to
g EHT make sure that that layer is a vector object with poly-
e Codlcie S gons). Statistics are computed for the bottom layer
Por inovans 16906.,28 in the view; the script checks to make sure that that
Sorface frnas 5,85 layer is a grayscale or binary raster object. The Re-

Distance Units:____ meters || gion Statistics window created by the script is similar
A tnits: ssuare kitoneters 2| | 16 the one used by the Area Statistics script, but
includes push-buttons at the top that let the user

indicate whether the se-

Save Rs... | Close |

Script Edit Insert Syntax Help lected pOIygon should be
3 REGSTATP,SHL - Allows user to select an area of a nomcomposite rasterls| added to or subtracted from
4 by selecting and deselecting polyzons fron a wector layer ower the tupJ A
: The script then outputs the nunber of cells, nunber of nan-null cells, the reg|0nl and a button to

nininun, narinun, nean, standard deviation, area, perineter, centroid,

and surface area over that region. The user nay choose any distance or H
area units for the output to be displayed in. Clear the reg|0n-
4 Requires THTnips version 6.4
4 The following sunbols are predefined The Region Statistics Script
class GRE_VIEH View fuse to access the view the tool scr . R
4 class GRE_GROUP Group fuse to access the group being wiewe |nv0kes a standard po|nt
Yariable declarations 1 1
class XnForn forn, buttonRow, plusHinuss tOOI Wlth predeflned mouse
class XmSeparator linel, line2; H
class GRE_LAYER_VECTOR vectorLayer: button actions. A left but-
class GRE_LAYER rasterlayer; .
class Vector targetVectors ton press p|aces the point
class Raster targetRaster;
class XnDrawingArea das 1
class GraphicsContext gcs tOOIY and a‘ rlght bUtton press
class PointTool pointTools H
cbring voctorHanat, rasterlanet, regionHodet; selects the enclosing poly-
class PushButtonIten saveButton, closeButtonj
class XnPushButton clearicon; gon,
class ToggleButtonIten plusicon, ninusiconi]
=] I} P

o

More about the Region Statistics tool script is available in an online document at

http://lwww.microimages.com/relnotes/v64/regionstatistics.pdf

page 54

Spatial Manipulation Language

Sample Tool Script: ViewMarks

The ViewMarks tool script (verooL.smL) allows you

to record a list of position markers for the View win- =
dow. A ViewMark records the map coordinates of uﬁlﬁl = ¥ -

the current view center (in latitude/longitude) and Jones Farn J

= Yiewpoint List _|0[%]

Palnyra Area

the map scale. Once the list is created, you can Palnura Toun
select a ViewMark and recenter the View window on Suracuse and Floodelain |4
that location at the designated scale. ViewMarks .
icularl ful for layouts that cover a large | Voot lets you pick

are pal’tICEJ arly usetu - y 9 viewpoint from the Viewpoint
geographic area, especially when the layout uses | List to center the view at that
limited map scale visibility to add and remove layers | location and scale.

as you zoom in and out. Suery Editor mEs

Script Edit TInsert Syntax Help

The ViewMarks script creates a
Viewpoint List dialog window

A

4
ToolScript for recording "viewpoint position" as center and zoon,|

The following synbols are predefined

#
- - - - #
that provldes an |nteract|ve I|St # class GRE_VIEM Yiew fuse to access the wview the too| |
.. # class GRE_GROUP Group fuse to access the group being
- # class GRE_LAYOUT Layout fuse to access the layout being
as We” as bUttonS USEd to ini 4 nukeric ToolIsActive Hill be 0 if tool is inactive or 1
#

tiate script actions; there is no
. class XnForn dlgforn;
graphic tool created by the |[c1ass seiist postiats

class HAPPROJ projLatLons

SCI’ipt. This d|a|og is created by class TRANSPARH transHapToYiews

class FILE posfiles

the Onlnitialize() function. The |[umeric sschangeds
icon buttons on the Window let [[meric mepe oo

array nuneric posX[1l;

you add or remove ViewMarks - (FSSESIEG_.
from the list and zoom to the se-
lected mark. Other push buttons [[fueesetme 6 e "

if {nunpos == 0} return (false};

let you save the listto a text file, Local string posfilenancts

posfilenane$ = GetOutputFileHane{"","Select position file to sav

open an existing Viewpoint list DeleteFile(posfilenanet)s

If you get an error that fopen{) is being passed too nany para
1 1 # get a neu tntdisp,exe, The 3rd parameter uas added 01-Feb-200

file, create a new list, or close | 5.8l =Fomncoociitonanst; s iFaws;

if {posfile == 0} return {false};]

the window. Each of these but- | . =
tons calls a separate function [Ssntex X
or procedure defined in the tool script.

When you add a ViewMark, a prompt window opens
to let you name the mark. (The default name is the s S
. . - =Pronpt

zoom level and coordinate position). The ViewMark [[assssuessees .

i) !) position nane?
names are stored in a list widget (class XmList). The [J1:57700 -g5.3a0508 40.701939
x-coordinate, y-coordinate, and scale values are ok | Cancel| Help |
stored in separate numeric arrays.

More about the ViewMarks tool script is available in an online document at

http://www.microimages.com/relnotes/v64/viewmarks.pdf

page 55

Spatial Manipulation Language

Sample Tool Script: Find Streets

The Find Streets tool script (sTreeTs.smL) illustrates
how a script can access database information and
perform specialized selection tasks. The script uses
=Search for a stree =T astreet name entered by the user to locate and high-
124 light vector lines representing the street. The user
may enter all or part of a street name, and the tool
script displays a list of all
streets containing that search
Enter all or part of the nane of the street to search for X
TERRINAS text. When the user picks a

\ o« | Cancal . street from the list, the script
\

= Pronp i (] 3

redraws the view at 1:30000
™ . et with all lines that form parts of the street highlighted
e user enters a stree - - H
name and the tool script and ger_nered in the View. If all the s_tree;s lines do
finds it on the map. not fit in the View at 1:30000, the View is redrawn
at a scale that fully contains the lines.

EIATLAS / Leve:22 - Layout View 1 The SCfipt uses the cur-
View Tool LegendView GPS Options Help rent h|gh||ght colors for
@/ 0.5\ 2/ 2| QN YA gﬂﬂﬂﬂl@ﬁj selected and active ele-
e ments (Options/ Colors).

For this tool, the selected
street will have a uniform
appearance if both the
active and selected colors
are the same (yellow in
the window illustration).

~1 —
View:| 26,6 Scale:| 30000 S|t 4] 1788174.71 < 903488,04 n

Tine to draus 1 Second |

The name of the town
_ and the zip code are also
sTReers.smLis coded towork | provided in the list of streets found. The script as-

with specific geodata from a sumes there are not two separate streets in the same
sample atlas of France. You p

must modify the script zip code with the same name. If, however, it turns
before it will work with other | out that the search name belongs to two different
geodata and attributes. streets in the same zip code (one Main Street, the

other Main Drive, for example), only the first en-
countered is listed but both are highlighted when that
selection is made.

More about the Find Streets tool script is available in an online document at

http://www.microimages.com/relnotes/v64/findstreets.pdf

page 56

Spatial Manipulation Language

Sample Tool Script: Flow Path

The Flow Path tool script shows how custom analy-
sis procedures can be performed on layers in the cur-
rent view using an SML Tool Script. The script uses
SML watershed functions that operate on an eleva-
tion raster (DEM) that must be the first layer in the
View window.

When the user launches the script, it first executes
watershed functions to create a depressionless ver-
sion of the DEM and a complete set of vector flow
paths. These derived features are required by subse-
quent script steps; they are stored as temporary ob-
jects and are not displayed in the view. The script
then opens a FlowPath and
Buffer Zone window and cre-

EGroup 1 - Group Yiew 1

View Tool LegendVieuw GPS Options Help

=FlowPath and Buffer ZofmE]

el =] X]

" Hove Seed Point to FlowPath

I~ Conpute Flow Path
" Compute Upstrean Basin

I Conpute Buffer Zone

Buffer Distance| =Y

ates a graphic tool that allows
the user to place one or more
watershed seed points on the
DEM or on an overlying im-
age layer. Toggle buttons on
the window enable the user
to choose to compute and dis- 2
play: e

« the upstream basin (area with flow toward the

seed point),
« the flow path downstream, and
« a buffer zone around the flow path.

If the user intends seed points to fall along a stream
course, they can turn on the Move Seed Point to Flow
Path toggle button. Each seed point is then moved
to the nearest precomputed flow path line before the
new flow path and basin are computed. The user
can place new seed points, repeat the analysis as
many times as desired, and save the computed vec-
tor objects.

@B == H2/RIRCUUSRE QS N|E=

The script also creates and
displays (in red) a vector
layer outlining the extents of
the DEM. If an overlying
image layer is larger than the
DEM, the user can use the
extents box to guide
placement of the seed
points. The extents box is
also used to automatically
clip buffer zones computed
from flow paths that intersect
the DEM boundary.

More about the Flow Path tool script is available in an online document at

http://www.microimages.com/relnotes/v64/flowpath.pdf

page 57

Spatial Manipulation Language

Sample Tool Script: Run Browser

EGroup 1 - Group Yiew 1

Yiew Tool LegendView GPS D)

@D -5 H2/7IS/E/Q)

Layer: CBSOILS_Lite

+/THT_HIN/TOOLSCR/url. tut

Yector Hode: ., Points -+, Hodes

The Run Browser tool script (URLs.sML) is an example
of a custom script that launches an external applica-
tion program. The script allows a user to set up and
use links between spatial data in a view window and
sites on the World Wide Web. Links can be made to
cell values in a raster, or to specific attribute values
associated with vector ele-
ments. One or more URLs can
be entered for each value. Once
o Lines # Polygans | |INKS are set up, the user can

Action: # Scan T Add

select an element or cell in the

Open File Il Launch Brouserl Close | VIeW WlndOW’ Choose the de-
- sired URL, then have the script
I launch the default web browser, which then goes to

Turn on the Add button to
set up links, and the Scan

button to use existing links.

To use links in Scan mode,
select your target URL and
click [Launch Browser].

the desired web address.

To use the tool, left-click on the polygon or cell de-
sired, then right-click to confirm the select tool is
correctly positioned. The URL(S) associated with
the selected feature appear in the Selecta URL win-
dow that is created by the script. Choose the de-

sired URL, then click on the

File Edit

w1 | Launch Browser button.

£poly CLASS Class KeB3
£poly CLASS Class JnD3

£poly CLASS Class Bd3

wwH_ nicroinages.con
wuw,wheatworld.org
uuu, oznet, ksu, edu/uheatpage/

£53

HHW. COrN.Org
€53

[CBSOILS_Lite : Crow Butte soil type polygon overlayl I3
wuu.statlab.iastate.edussoils/osd/dat/K/KEITH.htnl

uuu,statlab, iastate,edu/soils/osd/dat/J/IAYEH, htnl

wwu, agpub,on.ca/text/ julyl6/crop_1.htn
£71

uuu, ag, uiuc, edu/*Food-Lab/soy/soy. htal

The associations between
URLs and element attrib-

i, statLab, iastate, edussoi Ls/osd/dat/B/BANKARD, htnl utes or cell values are
[CLS_HAXLIKE : Class raster fron 6_06, 7.30, & 10_10 {Green, Red, NIRG}] stored in aseparate text ﬁ|e,
£33

specified in the sample
script as urL.TxT. The text
file lists the name and de-
scription for each object
with URL links. The asso-

.

A=

ciations in this sample tool
script refer specifically to ce_pata / cB_soiLs.rvc /
CBSOILS_LITE, OF BEREA / BERCRPCL.RVC / CLS_MAXLIKE.

More about the Run Browser tool script is available in an online document at

http://www.microimages.com/relnotes/v64/runbrowser.pdf

page 58

Spatial Manipulation Language

Sample Tool Script: Command Parser

Several of the tool scripts discussed previously cre-
ate a control window that allows users to execute
script actions using push buttons or other graphi-
cal interface controls. The Command Parser tool
script (compar.smL) demonstrates a script design that
creates a "command line" interface for executing
scriptactions. The Command Parser window cre-
ated by the script includes a text field in which the
user enters predefined text commands. A procedure
named ParseCommand() associates
each command string with a particular

The Command Parser
window created by the script
includes a field for entering
command strings and one
that displays process status
messages. An icon button
opens a Help dialog
window.

= Connand Parser
ﬁl Enter Conmand:

function or procedure defined else-

Status: IColor‘nap read

where in the script.

This sample script was designed as a com-
mand-line equivalent to the graphical Color
Palette Editor in TNTmips. It allows a user
to create or edit a color palette by assigning
colors to particular cell values or cell value
ranges in a raster. The script uses a very small
set of commands (each one or two characters
long), some of which are accompanied by nu-
meric parameters. For example, the command
string "'pr,3,20,1" paints a range of cell values
from 3 to 20 with the color specified by color
index number 1. The index numbers and cor-
responding color values (R, G, B, and
Transparency values) are defined in a text =
file, which for script access must be read into ~ -
an array using the command "b".

Although a graphical interface is easy to learn, ex-
perienced users can execute repetitive tasks more
quickly using acommand-line interface. Tasks that
might require several mouse actions in a graphical
window can be executed using a single short com-
mand string.

Commands are included to
create a color text file from
a color palette in a project
file, or to create a color
palette from a text file.

More about the Command Parser tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fixcolor.pdf

page 59

Spatial Manipulation Language

Sample Tool Script: FRAGSTATS

If a tool script is installed for
use with any 2D Group, it
can be run from any view
window in any TNT
process. So you can run
the Automatic Classification
process and immediately
run the Fragstats tool script
on part of the Class raster
that is shown in the Class-
ification View window.

fication Vieu

Tool LegendYiew Options Layer

The FRAGSTATS tool script (FRAGTOOL.SML) IS an
example of a script that extracts spatial data from a
raster layer in the view and passes the data to an ex-
ternal application program for processing. The
FRAGSTATS program was developed by landscape
ecologists to compute a variety of statistics about
the spatial patterns of areas (patches) representing
different ecological habitat classes. The appropriate
input for the tool is there-
fore a class raster, one
that has a unique integer

_I_ll 5 _l_l_l_l_l_l_l _l_I_I_IEI

A separate script for running
FRAGSTATS from the SML
process interface is also
available. FRAGSTAT.SML
can be found in the scripTs /
GENERAL directory. This
script requires that you
provide both the class
raster and a binary mask
raster to define the area of
interest.

value assigned to cells of
each category or class.
You can create class ras-
ters from multispectral
imagery using the Auto-
matic Classification or
Feature Mapping pro-
cesses in TNTmips.

The FRAGSTATS tool script provides a polygon
tool that lets the user select an area (created as a
temporary region object) for calculating the land-
scape statistics. When the tool is applied, the script
writes the class raster to a text file for use by the
FRAGSTATS program. Cells outside the region of
interest are given negative class values in the text
file, which is the FRAGSTATS convention for iden-
tifying cells that are outside the "landscape
boundary". The script then launches the
FRAGSTATS program ina DOS shell. FRAGSTATS
identifies homogeneous patches and computes sta-
tistics for the individual patches and for entire
classes. The statistics are saved in a series of text
files.

More about the Fragstats tool script is available in an online document at

http://www.microimages.com/relnotes/v65/fragstats.pdf

page 60

Spatial Manipulation Language

page 61

Spatial Manipulation Language

page 62

Spatial Manipulation Language

page 63

Advanced Software for Geospatial Analysis

Microllmages, Inc. publishes a complete line of professional software for advanced geospziiiél'

data visualization, analysis, and-publishing. Contact us or visit our web site for detailed
product information.

TNTmips TNTmips:is a professional system for fully integrated GIS, image analysis, CAD,
TIN, desktop cartography, and geospatial database management.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector,

image, CAD, TIN, and relational database project materials in a wide variety of formats.__-

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project’'materials on CD-
ROM at low cost. TNTatlas CDs can be used on any popular computing platform.

TNTserver TNTserver lets you publish TNTatlases on the Internet or on your intranet.
Navigate through geodata atlases with your web browser and the TNTclient Java applet.

TNTIlite TNTlite is a free version of TNTmips for students and professionals with small-+.»

projects. You can download TNTlite from Microlmages’ website, or you can order
TNTIite on CD-ROM.

Index
KAPPLI DAT 11F L1 D TR h

mMOoVie SCript...ccccovvvveeiinns34,35
preprocessor commands.................... 20
ProCeAUIES....ccvvveeeeeeiiiiiie e e eeveiiinnns

raster ObJectS.......cccovvvvverveieiiiiien,
region objects .
ClaSSES...uveiiiieiie e 14-16 stringlist.......ocooviiiiiiiii

CUSTOM MENU...ceiiiiiiiiiiiieieeeeeeiiiiie e 22 SYNTAX it
L= 00174 01 o] 4 SN SML layer script

expressions... TIN objects

functions.......... Tool Script

GeoFormula.........ccovveiiniiiniinn, t001barS. ..o
IMPOrt.. .o USET INPUL...eiieciieceeee e
including SCripts........cccocveeviinnenn. variables............

loops (for, for each, while).... vector objects

Kl\/lacro SCHPL i view window

Microlmages, Inc.
11th Floor — Sharp Tower
206 South 13th Street
Lincoln, Nebraska 68508-2010 USA

\oice: (402)477-9554 email: info@microimages.com
FAX: (402)477-9559 Internet: www.microimages.com

S
M
L

NHUT—-—TVOW

	Before Getting Started
	SML in the TNT Products
	Be Creative with SML
	Run VIEWSHED.SML
	Fundamentals of SML Syntax
	Checking Syntax
	Variables
	Expressions and Statements
	Built-In Functions
	Online Function Help
	User-Defined Functions and Procedures
	Loops and Branches
	Using Classes
	Member Inheritance and Type Checking
	Class Methods
	User Input
	Using Arrays, Matrices, and Stringlists

	Script Development and Editing
	Preprocessor Commands and Debugging
	SML Debugger and Script Timing
	Toolbars and the SML Custom Menu
	Raster Objects
	Vector Objects
	Using the Vector Toolkit
	CAD and TIN Objects
	Region Objects
	Database Objects
	Converting Objects
	Sample Script: Extract Polygons
	Sample Script: Network Routing
	Creating and Opening a View Window
	Coordinate Systems in Views

	Movie Generation Scripts
	3D Simulation Scripts

	Batch Import with SML
	SML Layer in Display
	SML and GeoFormulas
	Script Objects and Encryption
	APPLIDATS
	Providing APPLIDAT Instructions
	BIOMASS2 APPLIDAT

	Tool Scripts and Macro Scripts
	Macro Script Setup
	Sample Macro Script: Zoom to Scale
	Sample Macro Script: Snapshot
	Tool Script Templates
	Sample Tool Script: Select Point
	Sample Tool Script: Select Element
	Modify and Extend Tool Scripts I
	Modify and Extend Tool Scripts II
	Sample Tool Script: Raster Profile
	Sample Tool Script: Area Statistics
	Sample Tool Script: Region Statistics
	Sample Tool Script: ViewMarks
	Sample Tool Script: Find Streets
	Sample Tool Script: Flow Path
	Sample Tool Script: Run Browser
	Sample Tool Script: Command Parser
	Sample Tool Script: FRAGSTATS

	Blank page
	Blank page
	Blank page
	Index and MicroImages Product Information

