etting Started

; ui Id in 9 an d
S in g Q et es

:'.'JF; Tm | p S ‘
TNTed iy,
TNTV|eW®

Before Getting Started

This booklet introduces you to the use of database queriesinthe TNT products
and showsyou how to construct queriesto utilize the attributeinformation attached
to your vector, CAD, and TIN objects. The query process may seem complex at
first, but this series of step-by-step exercises leads you through the required
structure and syntax of queries, progressing from simple one-line examples to
gueries with multiple condition statements and processing loops.

Prerequisite Skills Thisbooklet assumesthat you have completed the exercises
in Getting Started: Displaying Geospatial Data and Getting Sarted: Navigating.
Those exercisesintroduce essential conceptsand skillsthat are not covered again
here. Please consult those booklets and the TNTmips reference manual for any
review you need.

Sample Data The exercises presented in this booklet use sample data that is
distributed withthe TNT products. If you do not have accessto aTNT products
CD, you can download the datafrom Microlmages web site. In particular, this
booklet uses samplefilesinthe Query datacollection. Make surethat you havea
copy of the sample dataon your hard drive so changes can be saved when you use
the objectsin thesefiles.

More Documentation Thisbookletisintended only asan introduction to the use
of database queries. Consult the section entitled “ Display Vector, CAD, and TIN
by Query” in the Display volume of the TNTmips reference manual for more
information onthe Query Editor, and Appendix 2: Database Queriesfor acomplete
reference on query commands and functions.

TNTmips®and TNTIite® TNTmipscomesin two versions: the professional version
andthefree TNTIliteversion. Thisbooklet refersto both versionsas“ TNTmips.”
If you did not purchase the professional version (which requiresahardware key),
TNTmipsoperatesin TNTIlite mode, which limits object size and does not allow
export.

Database queries can also be used to control the display of geospatial objectsin
TNTview, and to select elements for editing in TNTedit. All exercisesin this
booklet can be completed in TNTIite using the sample geodata provided.

Randall B. Smith, Ph.D., 17 September 2001

It may be difficult to identify the important points in some illustrations without a
color copy of this booklet. You can print or read this booklet in color from
Microlmages’ web site. The web site is also your source for the newest Getting
Started booklets on other topics. You can download an installation guide, sample
data, and the latest version of TNTIlite.

http://www.microimages.com

page 2

Welcome to Building and Using Queries

TNTmips gives you great flexibility to use the
database attributes of vector, CAD, and TIN objects
to control the display and printing of the object, or
to select elements for use in various processes.
Database queries provide the most complete and
versatile meansto utilize this attribute information.

A database query is a set of instructions defining
attribute criteriathat are used to select recordsfrom
adatabase. The specific spatial elements (such as
linesor polygons) towhichthoserecordsare attached
are then automatically selected for the current
process. A query appliesto aspecific element type,
and you can simultaneously use separate queriesfor
different element typesin an object. In Spatial Data
Display, the Style By Script option allows you to
specify display parametersfor selected elementson
thebasisof attributes. The attributeinformationyou
refer to in queries can be qualitative (such asaclass
name), or quantitative (such as crop yield values).

Queries must use a standard “grammar and syntax”
that TNTmipsunderstands. The query language used
is a subset of the TNTmips Spatial Manipulation
Language (SML). You compose queriesinthe Query
Editor window, which has menus that simplify
construction of valid queries by letting you choose
fields from the available database tables and insert
symbolsand functionsfrom list windowsthat outline
the correct syntax. The Query Editor also provides
a syntax checker to help you find errors before
applying the query.

Theexercisesin thisbooklet use queriesto select or
style elements in a vector object for display. Keep
in mind, though, that queries can be used in any
process that selects component elements in vector,
CAD, or TIN objects. In addition, you can use
gueriesin someraster processes to select cell values
for processing.

?

STEPS

M make sure that you have
a copy of the sample
data in the QuEry data
collection on your hard
drive

launch TNTmips

launch the Spatial Data
Display process and
select New 2D Group
from the toolbar

™

The exercises on pages 4-9
introduce the structure of
simple query statements,
comparison operators, and
some useful tools for
building and checking
queries. Pages 10-17 cover
query structures involving
compound statements, the
use of variables and
comments, and using
queries to check database
record attachments. Styling
by Script is introduced on
pages 18-19, along with the
use of conditional “if-then-
else” constructions.
Examples of queries based
on the spatial and
topological attributes of
vector objects are found on
pages 20-23. Pages 24-25
show scripts to create
computed fields in database
tables, while pages 26-27
provide examples of queries
that are useful in editing
vector objects.

page 3

Building and Using Queries

Select by Querying a Single Field

STEPS

o

click the Add El
Vector icon button

and select Add Vector
Layer from the dropdown
menu

select the cBsoiLs_LITE
object from the ce_soiLq
Project File in the Query
data collection

in the Vector Object
Display Controls window,
check that the Select
option on the Lines
tabbed panel is set to All

M set the Select option on

the Labels panel to None

M check that the Style

0Ob ject | Foinks | Lines Polygons |Nodes | Labels

Select: By Query —

Style: By Attribute — | Specify.,.

)

)

=EfQuery Editor

option on the Polygons
panel is set to By
Attribute

ISpecil‘ Y. .‘

Thesimplest form of query sel ects a specific type of
spatial element (such aspolygons, lines, or pointsin
avector object) on the basis of thevaluesfor asingle
databaseattribute. Inthisexerciseyou enter asmple
query that selects soil map polygonsinavector object
for display. Each soil type has associated valuesfor
maximum potentia yield for severa crops. Thequery
selects polygons for which the potential crop yield
for wheat is greater than 35 bushels per acre. The
query statement hastheform:

Comparison

Operator Value

Attribute

The query must specify which database table con-
tains the attribute information, and in which field it
isfound. This “attributelocation” information must
beenteredintheform TABLE.FIELD. Thevaluein
thisexampleisasmplenumericvalue,
and the comparison operator is the
“Greater than” operator (>).

set the Select option on
the Polygons panel to By
Query and click on the
adjacent Specify button
in the Query Editor
window, type the
following text exactly
(including capitalization):
Y!I ELD. WHEAT > 35
click [OK] in the Query
Editor window

_[C1[x]

File Edit Insert Syntax Help

YIELD,.HHEAT > 35

=~ |

0K

A

|

I
Z} Since line selection was set to All, the outlines of all soil
polygons are drawn. The polygons selected by the query

o

click [OK] in the Vector
Object Display Controls
window to accept the
display settings and
display the vector object

are filled with colors and fill patterns that are based on
the soil type and that were previously set up for display
By Attribute. Several soil types meet the wheat yield
selection criterion. Unselected polygons remain unfilled.

page 4

Building and Using Queries

Using the Insert Operator Option

The previous query sel ected soil polygons belonging
to several soil typeclasses. Let'srefinetheselection
criterion so that the query selectsonly those polygons
with a potential wheat yield of exactly 38 bushels
per acre. To specify this selection criterion, usethe
“Equal to” operator (==, double equal sign) in the
query statement. Thelnsert/ Operator menu option
in the Query Editor opens the Insert Operator
window, which |ets you choose the operator from a
scrolled list and insert it into the query statement at
the current cursor location.

Choose Operator from
the Insert menu to
open the Insert
Operator window...

= Query Editor

—
YIELD,HHEAT Field...
Synbol...

Function...

Dperator, . .

...which lists the
available query

Keyword, .,

Class...

operators.
= Inser?. Operator HmE
7 Y
“ » z/
Select the “Equal to & J
operator. \ =
E
<>
>= 7l
Click [Insert]... |Equal to {Conparison? — |
...to enter the operator in | _tlose Insert | oty |

the query statement.

STEPS

M click on the Vector
icon in the Layer E
icon row to open the
Vector Object Display
Controls window

M click on Select: [Specify]
in the Polygon Options
panel

M highlight “> 35" in the
Query Editor window and
press <Delete>

M open the Insert menu
and select Operator
in the Insert Operator
window, scroll down and

select the “==" operator;
click [Insert], then
[Close]

M in the Query Editor
window, type 38 to the
right of the operator,
then click [OK]

M click [OK] in the Vector
Object Display Controls
window to accept the
display settings and
display the vector object

=1 __— The text field describes
the function of the
selected operator.

= Query Edivor _ [] Type the
File Edit\ Insert Syntax Help value to be

YIELD,HHERT == 7| matched.

= Query Editor

File Edit Inser Syntax Help
- YIELD,HHEAT == 38 7]
i
= i
| 0K
Fewer soil classes meet the more —1

restrictive selection criterion in the revised
query statement.

Building and Using Queries

Using the Insert Field Option

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M select YI ELD. WHEAT in
the existing query and
press <Delete>

M open the Insert Menu
and select Field

M in the Insert Field
window that opens, click
on Yl ELDin the Table
list

M click on OATS in the
Field list, then click

[Insert]
M click [Close] on [SECELTRETSE [
the Insert Field Table Field

You can aso usethe Insert/Field menu optioninthe
Query Editor to help construct or modify queries.

This option opens

the Insert Field window, from

which you can choose the Table and Field and
automatically insert theattributelocationinformation
into your query statement in the correct form.

Choose Field from the |ErmepTs =

Insert menu_ to Open — File Edit Insert | Syntax Help

the Insert Field = 38 Field... &

window... Synbol, ..

..which lists all e on- "
. erator...

available database = K:ymd T

tables for the selected Class... Dk

element type.

S8 Choosing a Table also

displays a list of its fields.

WindOW Internal A
M change the CLASS J = lInsert Field EEE
value on the el Table - Choosing a field...
right side of the IYLOUNITS [;|Internal ||SYHBOL [arryey mED
quety statement DEStRIPTH |- AT
to 43, then click HAYDRY Ualills (7 foil)
[OK] Close | £51| YLDUNITS Y.+ [HAYHET i[ﬁgg“al |5¥HB0 -'il
M click [OK] in the = DESCRIPTH
Vector Obiect Displ R ...creates the
ector Dbject Lisplay TABLE.FIELD
Controls window Close | Enner 2,| TLOUNITS 7 |HAYHET .
YIELD,OATS entry.
This query selects several of - | Insertl Help |
the same soil classes selected y

by the first query (page 4).

/
Click the Insert button...

... to insert the TABLE.FIELD entry
into your query statement.

= Query Editor I x]

File /[Edit Insert Syntax Help

YIELD,OATS == 38 A1

= Query Editor

File Edit Insert Syntax Help

~I_||YIELD,0ATS == 43 1
- J
L
i
= 7 i
/] o

V4
Change the value on the right side of
the statement to 43.

page 6

Building and Using Queries

Querying a String Field

The query language used in TNTmips is case-
sengitive. If thetable CLASS containsafield called
Class, the TABLE.FIELD entry must read
CLASS.Class; if you enter it asCLASS.CLASS, the
query processwill not find thefield and will indicate
thereisan error inthe query. Usingthe Insert Field
procedure helps you avoid thistype of problem.

The database fields you have used in your queries
so far have contained numeric data. The YIELD
table for cesoiLs LiTE also contains a field named
SYMBOL with soil type symbolsin String format.
The term “string” is short for “character string,”
which means that the field is not evaluated
numerically, and can contain text and other
nonnumeric characters. String fields may contain
numerals (for example, CLASS1), but they areread
as charactersrather than asnumbers. String values
in query statements must be enclosed in double
guotes, and are also case-sensitive.

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M select YI ELD. OATS in
the existing query and
press <Delete>

M use the Insert Field
procedure to insert
YI ELD. SYMBOL on the
left side of the query
statement

M change the value on the
right side of the query
statement to "KaB"
(including the double
quotes), then click [OK]

M click [OK] in the Vector
Object Display Controls
window

YIELD, SYHBOL

Close I/ Insertl Help |
/

/
The SYMBOL field contains string values.

Enclose a string value in double quotes.

= Query Editor _ [x]

File Edit Indert Syntax Help
YIELD.SYHBOL == "KaB™ A

Selected soil polygons
belonging to class KaB.

page 7

Building and Using Queries

Checking Query Syntax

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M manually change the left
side of the existing
guery statement to
CLASS. CLASS (all
capitals)

= Query Editor [0]

File Edit Insert Syntax | Help

CLASS.CLASS == “KaB™ Check. ..

Therules concerning capitalization and use of quotes
for string values are examples of the syntax of the
TNTmipsquery language. Query syntax ischecked
automatically when you click [OK] to execute the
query, and when you choose Close from the File
menu to close the Query Editor. (If the query
contains a syntax error when you try to close the
Query Editor, thewindow remains open and an error

message is displayed.)

You can check the syntax of a query
before executing it by choosing Check

List,..

SHL Docuwmentation,..

fQuery Docunentation,.. The process can find miSSp6| li ngs,

from the Syntax menu inthe Query Editor.

Save Function Reference...

4 Debug

S (Bl [missing parentheses or other symbols, or

Save Function List...

referencesto nonexistent databasefields.
The process starts checking at the

M choose Check from the
Syntax menu

M note the error message,
then click [OK] on the
Message window.

M change the left side of
the query statement to
CLASS. Cl ass

M choose Check from the
Syntax menu

M note the “Syntax OK”
message

In this example the cursor is
placed at the end of the

beginning of the query. If no syntax errors are
encountered, the message line at the bottom of the
Query Editor window reads*” Syntax OK.” If asyntax
error is detected, the text cursor is placed at the end
of the first component of the statement that the
computer could not interpret, and an error message
appears in the message line. In this example, the
query checker detected that thereisno databasefield
named CLASS in table CLASS, so the cursor is
placed at the end of the CLASS.CLASS entry. After
correcting a syntax error, you can use the Syntax
option again to check for errorsin the remainder of

invalid TABLE.FIELD entry. the query.
= 0Query Editor _[O] %] = Query Editor HE=E
File Edit / Insert Syntax Help File Edit Insert Syntax IHElp
CLASS,CLASS, == "KaB" 2 CLASS.Class == "KaB" Check. ..
List,..
SHL Docunental
v | =Query Editor _ (O] x|
=1 1 EF oy =
|Syntax error; expecting Humeric Field Hane I DK ’_ File Edit Insert Syntax Help
- CLASS.Class == "KaB" 4]]
In more COmpleX queries, the syntax error may The “Syntax OK”

actually be the result of something missing after
the point where the cursor is placed, such as a
closing parenthesis or the ‘end’ statement of a =

begin / end loop.

message appears if no
errors are found.

[Syntax Ok 7 | ol

page 8

Building and Using Queries

Using Calculations in Queries

Thevalue ontheright side of aquery statement can
also be provided by adatabase field or acalculation
involving a database field. Calculationsin queries
can use standard arithmetic operations:. addition (+),
subtraction (-), multiplication (*), and division (/).
You can enter the operation symbolsfrom the Insert
Operator window if youwish. TheInsert

STEPS

M choose New from the
File menu

use the Insert
procedures and / or
manual entry to create
the following query
statement:

)

| Yl ELD. OATS

== Yl ELD. WHEAT + 5

/ Function option provides access to
trigonometric and other mathematical functionsthat
can also be used in query statements. The sample
query for thisexercise selects soil polygonsfor which
the potential yield for oats is exactly 5 bushels per
acre greater than theyield for wheat.

By now you have probably noticed that thelast query
used for a particular object and element type is
automatically stored with the object and is opened
the next time you select the same By Query option.
If you wish to store several queries for the same
object for future use, you can usethe Save and Save
Asoptions on the Query Editor’sFile menu. These
options allow you to save the query currently
displayed in the Query Editor window as atext file
with a .qrv file extension, or as a text object in a
Project File. Torecall astored query, use the Open
option on the File menu.

= Query Editor

File Edit Insert Syntax

M choose Save As from

the File menu, then

* QRY File from the

menu that opens

use the standard File

Selection window to

name a new file to

contain the query

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

Usually a query will work
only with a specific object
because of a reference to a
unique database field. If
you have a series of objects
with identical database
formats, or the query refers
only to fields in standard
tables created by TNTmips,
then you can use the same
query for any of the objects.

M mE

Hew

¥IELD.OATS == YIELD.HHEAT + & |.\|I

= Query Editor

File

Open
fave

Save As

_ 0]]
Edit Insert Syntax
== YIELD.HHEAT + 5

A

-

]

#.0RY File,..

" Close

RVC Object. .. | =

|

0K

7 T

7
Choose RVC Object to store the query
as a text object in a Project File.

page 9

Building and Using Queries

Compound Queries

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

Each of the queries used in the previous exercises
employs a single selection comparison to choose
polygonsfor display. In many cases you may need
to select elements using a combination of several
criteria. A seriesof selection comparisonsinaquery
statement must be related to each other by one or
morelogica operatorsfrom set theory, such as*and,”
“or,” and“not.” These operatorsmust be enteredin
all lowercaseletters. You caninsertlogical operators

|YI ELD. WHEAT > 34 and YI ELD. QATS > 40 |

in query statements using the

M click [OK] in the Query
Editor window and in the
Vector Object Display
Controls window

repeat above steps but
substitute “or” for “and”
in the query statement

_|CT]

=fQuery Editor

File Edit Insert Syntax

Insert Operator procedure.

When two comparisons are linked by the logical

“and” operator, both comparisons must be true in

order to make the entire query statement true and

select the element. When two comparisons are

linked by the logical “or” operator, the query
statement is true if either of the individual
comparisons is true. Elements meeting either
criterion are selected.

YIELD.HHEAT > 34 and

YIELD,OATS > 40 \

A long query statement may continue onto
additional lines, though you may wish to indent

subsequent lines to make it clear that they are part

of one statement.
L NFJ"J'

S
(= N
;:s"&“\’u.?\\%\ ;
sv - ‘ \
N

!
BN)

over 34 bushels per acre, and
yield is over 40 bushels per acre.

Polygons for which either potential wheat
yield is over 34 bushels per acre, or
potential oat yield is over 40 bushels per
acre.

potential oat

page 10

Building and Using Queries

Using the “not equal to” Operator

Most of the soil typesin the Crow Butte areahave a
higher potential yield for oats than for wheat, but
wheat usually brings a higher price than oats when
the crop is sold. Let's assume the crop prices per
bushel are $3.25 for oats and $4.00 for wheat. This
examplequery isused to identify soil typesfor which
the total potential crop price per acre for oats
(potential yield in bushels per acre times price per
bushel) is greater than or equal to that for wheat.

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

Thisquery iscomplicated by X: E::B' \&f‘?gT* <; (2>5
thefact that the potential crop : :

and
>= Y| ELD. WHEAT * 4. 00

yield for soil types that cannot be cultivated is 0,
and such soil types would satisfy the selection
comparison in the second line of the query. The
first line of the query excludes the zero-yield soil
types, and illustrates the use of the “not equal to”
operator (<> or !=). Thisstatement selectspolygons
for which the potential yield for wheat is not equal
to 0. Only these polygons are subjected to the price
comparison in the second line.

= Insert Dperator

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

~

J
»=
{=
e i
=

Hot equal to {Conparison}

Closel Insertl Hulp |

= Query Editor O]
File Edit Insert Syntax Help

YIELD.HHEAT <> 0 and
YIELD.OATS + 3.25 >= YIELD,.HHEAT * 4,00

= 1

]
-\ {
o Polygons for which a crop of oats would

bring a higher price per acre than wheat,

assuming the potential crop yields and the
stated prices per bushel.

page 11

Building and Using Queries

Using Comments and Variables

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

You can enhance the readability and later usefulness
of queries by including comments. A comment
beginswiththe“#" symbol, and may beonaline by
itself or at the end of a statement. You can use
comments within the query to explain individual
statements, and an introductory comment to provide
an explanation of the intended use of the query and
what object it appliesto.

The TNTmips query process

dollars = 129 # define variable for also alows you to name and
required crop

price per acre

assign values to variables for
use in a query. This example

sel ect pol ygons based on crop price | query selectssoil polygonsthat
Y| ELD. OATS * 3.25 > dollars or exceed arequired potential crop
YI ELD. VHEAT * 4.00 > dollars price per acre for either oats or

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

wheat. Thefirst line of the query is an assignment
statement that defines a numeric variable called
“dollars’ to store the required price, and givesit a
value of 129. The “=" symbol is used to assigh a
valuetoavariable (whichiswhy “==" must be used
for the “Equal to” operator).

Variables are useful when the same
value is used more than once in the
query. If you want to run this query
again with a different required price,
you only need to changethesinglevaue
assigned to the variable “dollars’. If
the query were written without the
variable, youwould need to changetwo
actual numeric values in the selection
Statement.

= Query Editor w3
File Edit Insert Syntax Help
dollars = 129 # define variable for i
- # required crop
/ % price per acre
Variable names must always be in lower- .
. . # select polygons based on crop price
case characters, and must begin with a letter. YIELD.OATS *= 3.25 > dollars or
A variable name cannot be the same as a WATELDLEIEN @ G0 2 drillers 4
query command or a database table or field = i
name. | 0K

page 12

Building and Using Queries

You can also define variables to contain string val-
ues. Thennameyou createfor astring variable must
endina$. Thequery inthisexercisedefinesastring
variable name$, which is assigned the value
“Glenberg”. Thequery selectsasubset of soil poly-
gons belonging to the Glenberg soil series, which
includes two soil typesin the Crow Butte area. In-
stead of using the two class symbols to select the
polygons, this query takes advantage of the fact that

theNAME fieldinthe DESCRIPTN
table providesasoil description that
beginswith the name* Glenberg” for
both classes. The query uses the

Using String Variables

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

nane$ = "d enberg"

DESCRI PTN. NAME cont ai ns nane$ and
(POLYSTATS. Area < 60000 or
POLYSTATS. Area > 200000)

“contains” operator, which selects
elements for which a specified character string
matches all or part of astring field. Inthiscasethe
character string to be matched (* Glenberg”) isstored Object Display Controls
inthe name$ variable. Polygonsmeeting thisselec- window
tion comparison are then screened on the basis [Eremr=rms

of their area(in square meters), which is stored

M click [OK] in the Query
Editor window
M click [OK] in the Vector

File Edit Insert Syntax

nanet = "Glenberg"

01 x]
DESCRIPTH.HAHE contains nane$ and

Table Edit PRecord Field
+.

Help
in the Areafield in the standard POLY STATS A
table. (A POLY STATStableispresent only if
standard attributeshave been calculated for the || poLvsiarefacess sostd s =
vector object.) == =
L/ I 0K
~ /
'(, ‘ " f The “contains” operator selects polygons
\ ‘_/". R for which the character string in the
x 77 W name$ variable matches any part of the
f,‘dt DESCRIPTN.NAME string field.
7 g A\
; M, § "" *\ \« = CBSOILS_Lite / PolyData / DESCRIPTH M=E
M’ — \ "&‘ . Help
(a\qﬁ !V \ ‘\\ &" Style|SYHBOL |NAHE
“ﬁ\ ‘\“ ',/ DuB DI.IPI:IC ver.‘u fine zandy loam, [
‘\“ AN e piriile $1a 50
f " \ GoB Glenberg luanu}erg fine =ar
o k‘ ‘ 4 [[JnC / 1 ery fine sand, .
..\ ‘E;EE ’ o A— =
(5 The text string “Glenberg” is included in

the DESCRIPTN.NAME field for both soil
types belonging to the Glenberg series.

page 13

Building and Using Queries

Using the Logical “not” Operator

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

A number of soils in the Crow Butte area have
potential wheat yields comparable to those of the
two Glenberg soils (27 and 32 bushels per acre).
Thequery inthisexercise selectsall of the soil types
within this range of wheat yield values except the
Glenberg soils.

Thefirst two lines of the query select polygons for
which the potential wheat yields fall within the
designated range. The

Yl ELD. WHEAT >= 27 and

YI ELD. WHEAT <= 32 and
! (DESCRI PTN. NAME contai ns "d enberg")

third line of the query
begins with the logical

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

= Query Editor

File Edit Inszert Syntax

“not” operator (!), which
reverses the result of the variable, operator, or
expressionthat followsit. Inthiscase, theexpression
following the “not” operator would only select
polygons belonging to the two Glenberg soils. The
“not” operator reverses this result and selects all
polygons meeting the previous yield requirements
except the Glenberg soil polygons.

The “not” operator is especially useful when there
isalarge set of values you do want to select and a
smaller, moreeasily specified set of valuesthat you
don’t want to select.

YIELD,HHERT 2= 27 and
YIELD.HHEAT <= 32 and

1{_DESCRIPTH.NAHE contains “Glen?)

Help
]
i

] N\

/

- A

0K

The ‘not’ operator reverse/s the next element
that follows it (including variables or other
operators). If you want the ‘not’ operator to
apply to an entire expression (as in this
example), the expression must be enclosed

in parentheses.

Building and Using Queries

Checking Record Attachments

The query used in this exercise differs from those
used in all previous exercises. Instead of querying
specific attribute values, it is based on the number
of records in a particular database table that are
attached to a polygon. The query employs the
SetNum() set function, which returns the number
of itemsinaset. Inthiscasethe setisprovided by
an expression that has the form Table[+], which
stands for all records attached to an element in the
named table.

Thisquery identifiesall soil classpolygonsthat have
no attached records in the YIELD table. The
converse query [SetNum(YIELD[*]) > 1] would
identify al elements with more than one record
attached. You can use queries with this form to
identify polygons that have not yet had attributes
assigned, or that somehow had extra records
attached. Inthisexample, all of the polygons with
no attached records in the [ErETrET

YIELD table belong to the

Function Group,.. | Set

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

Set Num(YI ELD{ «]) < 1

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

Use the Function Group
option in the Insert Function
window to select which
group of functions
to list in the
window.

]

Sethin
SetMinority

classWATER. They represent
small lakes and ponds, and

Set50
SetSun

Sethun _________________________|

Click [Details] on

therefore have no potential
cropyield.

SetHun(xl.x2.,..)
Returns the total nunber of elements

#l ¢ list of nunbers or strings
x2 : list of numbers or strings (opti

the Insert
Function window
to see further
information on

Returns :

[0 S O ——

nunber

/

the currently

=

Close

i .
/- selected function
and an example

Insert

Details...l

3
L
Wy

Polygons with no attached records in
the YIELD database table all belong to
class WATER. You can also select
unattached elements by right-clicking
on the icon for the corresponding table
in the Group Controls or Layout
Controls window and choosing Select
All Unattached Elements from the

i of its use.

ElDetails on: SetHun

SetHun(zl, ...} 3
Returns the total nunber of elenents

Where:
[Function / Setl

Paraweters:

ul, etc, any expression uhich evaluates to a nunber

Assumptions:
none

Returns:
an integer

TInsert Sanple Help

popup menu.

Close |

page 15

Building and Using Queries

Select using Multiple Attached Records

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

The LAYER tablefor the soil class polygonsin the
cBsoILsQ object containsinformation on the different
layersin atypical soil profilefor each soil. Thereis
a separate record for each layer in the profile, and
thus multiple records attached to each soil polygon.
Selecting elements on the basis of attributes among
multiple attached records requires a special query
syntax.

Inthisexercise, for example, we want to select

[“ve in LAYER*].texture | | typesthatincludeweathered bedrock inany

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

Soil class polygons that
have weathered bedrock as
part of their typical soil

part of the soil profile. This attribute is coded by
thestring “WB” inthetexturefield. If youtry using
the conventional selection query LAY ER.texture==
“WB", you will find that no polygons are selected,
even though some soils do have weathered bedrock
inthelower part of the profile. Thisquery structure
only checksthefirst attached record in the table for
each polygon, whichinthiscaseisusually thelayer
1 record, containing attributes for the topmost soil
layer. Subsequent recordsfor the deeper soil layers
areignored.

To query the texture field of all of the attached
records, we must use the expression
LAY ER[*].texture, which returns a set that liststhe

contents of the texture field from each
record attached to the current polygon.
Wethen need to determineif any of the
members of the set correspond to the
desired attribute “WB”. The easiest
way to do thisis to use the keyword
“in” asalogical operator. Thequeryis
true if the variable preceding the
operator isan exact match to any of the
elements in the set produced by the
expression following the operator. This
construction can be used with either
string or numeric fields.

page 16

Building and Using Queries

Find Island Polygons

A vector polygon that is wholly enclosed within a
larger polygoniscalled anidand polygon. Because
island polygons often have different attributes than
the enclosing polygon, processes that alter the
topology or attribute assignments of avector object
must keep track of island polygon relationships.

The Internal table for polygons includes several
fields that contain information pertaining to island
polygons. You can query thesefieldsto selectisland
polygons or polygons containing islands. The
Internal .Inside field contains the element number of
the enclosing polygon, if any. All island polygons
will have a non-zero value in this field. The first
query therefore selects all island polygons. The
Numlslands field shows the number of islands
contained by each polygon. The second query in
this exercise selects polygons that have a

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to create
the following query:

Internal.lnside >0

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

M repeat the above steps
using the following
query:

Numlslands value greater than O, corresponding || nternal . Num sl ands > 0

to all polygonsthat contain islands.

7

Island polygons selected by
the first query. Each island
belongs to a different soil
class than its enclosing

polygon.

Two polygons in the
cBsoILs_LITE vector object
include island polygons,
and were therefore
selected by the second
query.

Building and Using Queries

Styling by Script

STEPS _ The Style by Script option allows you to specify
& g?:g};;%gﬁ;ﬁ;?vﬂzgw display characteristics for subsets of the selected
& in the Lines tabbed elementsonthebasisof their attributes. Tointroduce
panel, turn on the Draw | the style options, this exercise retains the previous
Lines Before Polygons selection query, but uses a style script to set new
toggle button display parameters for all selected polygons.
Db_ject | Foinka | Lines Polygons |Nodes | Labels (NOI‘ma||y you W0u|d u%theA” Same
Select: By Query — | Specify...| style option to accomplish this.)

Style: By Script — I Specifu...l

When you are setting styles by script,
M in the Polygons tabbed the Insert menu on the Query Editor window

panel, set the Styls provides access to additional variables which are
option to By Script, and

click the adjacent used to set display characteristics. Filllnside and
Specify button DrawBorder are numeric variables which are
M use the Insert Symbol assigned a value of 1 to fill selected polygons and

procedure (Numericand | §ra 5 horder around them. FillColor$ and
String options) to create

the following style script: | DrawColor$ are string variables which are used to
set the color for the polygon fill and polygon

E: : : 'Oﬂ.s'ofg = : 100 50 o" | border, respectively. Thevaueassignedtothem
DrawBor der = 1 (enclosedin double quotes) can be either acolor
DrawColor$ = "red" name (red, green, blue, black, white, yellow,
M click [OK] in the Query orange, brown, cyan, magenta, or gray), or a set of
Editor window RGB values (each from 0 to 100%).

M click [OK] in the Vector
Object Display Controls
window

Use the option button on the Insert Symbol
window to access the different symbol lists:
constants or the different types of variable
(including numeric, string, and vector,
among others).

= Insert Synbol _|T[]

Type: String © —
= Insert Synbol
Type: MHumeric — .
Angle 3
DrawBitnapPatt
DrawBorder)
DrauLinePatt .
DrawSynbol | ‘ " '
~—— ||FillBitnapPatt h
Close | Insertl illTnside d
= > I\
Close | Inser‘tl Help | i
3 (\ T

page 18

Building and Using Queries

Compound Style Scripts

STEPS

In this exercise all soil class polygons are selected
for display, and a style script is used to define two
different sets of polygon display parameters on the
basis of the polygon area.

When you want to specify alternative actionsin a
query or style script, you must use “if-then-else”
commandsto explicitly definethelogic. The state-
mentsin this script translate to “if apolygon hasan
area greater than 200000 square meters, then fill it
with yellow, else (otherwise) fill it with a bitmap
pattern (‘ BitmapPatt4')”. When more than one re-
lated statement followsa*“then” or “else’” command
(asin this example), the group of statements must
be enclosed within begin/end commands. Omitting
the begin/end commands after “else” in this query
would not produce asyntax error.

|

o

open the Vector Object
Display Controls window
in the Polygons tabbed
panel, set the Select
option to All, leave the
Style option set to By
Script, and click the
adjacent Specify button

M choose New from the

File menu

M use the Insert

procedures and / or
manual entry to create
the query shown below

M click [OK] in the Query

Editor window

M click [OK] in the Vector

Object Display Controls
window

However, inthat case only thefirst
statement would be applied asthe
alternative to the “then” action;
the remaining statements would
be interpreted as applying glo-
bally to all selected polygons (like
the first two lines of the query),
overriding the style parameters
defined earlier.

DrawBorder = 1
DrawCol or$ = "red"
if (POLYSTATS. Area < 200000) then

begi n
Filllnside =1
FillColor$ = "yel | ow'
end
el se
begi n

Filllnside = 1
FillBitmapPatt = 1
FillPatt$ = "BitnapPatt2"

end /

In order to use a bitmép fill pattern in a script,
the pattern assigned to the Fil | Patt$
variable must reside in the User Set of
defined patterns for the object. In order to
have the pattern drawn, variables

FilllnsideandFillBitmpPatt must

both be set to 1. See the booklet Getting

Started: Creating and Using Styles for
information on creating fill patterns and other
styles.

Polygons with an area of 200,000 square
N\ Mmeters or greater are filled with the stripe
pattern defined in BitmapPatt2. Smaller

polygons are filled with yellow.

page 19

Building and Using Queries

Find the Polygon Enclosing a Point

STEPS

]

4}

]

open the Vector Object
Display Controls window
in the Polygons tabbed
panel, set the Style
option to By Attribute
set the Select option to
By Query, and click the
adjacent Specify button
choose New from the
File menu in the Query
Editor window

use the Insert
procedures and / or
manual entry to create
the query shown below

M click [OK] in the Query

Editor window

M click [OK] in the Vector

Object Display Controls
window

The query processincorporates anumber of spatial
functions that can be used to select elements. The
FindClosestPoly() function (in the Vector function
group) returns the element number of the polygon
that encloses a point with the specified x and y
coordinates. The required parameters for the
function include the vector object to query, the x
and y coordinate values, and the object number of
the georeference subobject to use in processing the
coordinate values. The georeference object number
is provided by the function GetlLastUsed-
GeorefObject() (in the Georeference Function
Group), which is used in the assignment statement
for the variable “georef”. The predefined variable
“Vect” (in the Vector list in the Insert Symbol
window) isused toindicate the current vector object.
The first two lines of the query define variables

xvar = -103. 33861 containing
yvar = 42.73583 valuesfor the
georef = GCetLast UsedGeor ef bj ect (Vect) x and vy
c_poly = Findd osest Pol y(Vect, xvar, yvar, georef) coordinates
I nternal . El emNum == c_pol .
-PoTy of the point.

The FindClosestPoly() function is used in an as-
signment statement that stores the element number
of the enclosing polygon in a numeric variable
(c_poly inthisexample). Thefinal statement of the

query comparesthe element number of
each polygon in the object
(Internal .ElemNum) to the number
stored in c_poly to find the matching

polygon for display.

Location of the point specified by coordi-
nates xvar (longitude) and yvar (latitude).
Values used in the query must be in the
same coordinate system as the specified
georeference subobject. Latitude / Longi-
tude coordinates must be expressed in dec-
imal degrees.

page 20

Building and Using Queries

Polygon Adjacency Query: Logic

A selection query can also make use of the
topological information associated with a vector
object. Eachlinein avector abject hasabeginning
node and an ending node, which define a left and
right side for the line. Each polygon is made up of
specificlineelements, and the Internal tablefor lines
includes fields that contain the element numbers of
the polygonsthat lie on either side of theline. The
GetVectorPolyAdjacentPolyList() function (in the
Vector list in the Insert Function window) usesthis
information to determine which polygons are
adjacent to the current polygon. This function can
beusedinaquery to select polygonsthat are adjacent
to specific polygon classes.

As an example, let’'s examine a query for the
cBsoILS_LITE vector object that selects polygons
belonging to soil class“SrD” that are also adjacent
to polygonsof class“ Sa.” To beconsidered adjacent,
the polygons must share a common line boundary,
not just acommon node. The general strategy used
in such aquery isasfollows:

1) Define the classto select.

2) If apolygon bel ongsto the sel ected class, then do
the subsequent steps (test for adjacency), otherwise

STEPS

M open the Vector Object
Display Controls window
and the Query Editor
window

M choose New from the
File menu

M use the Insert
procedures and / or
manual entry to enter
the query shown on the
next page

M click [OK] in the Query
Editor window

M click [OK] in the Vector
Object Display Controls
window

Vector object cBsoiLs_LITE
with all polygons of classes
SrD and Sa selected (for
comparison with illustration
on the next page).

Class Sa Class SrD

reject it.

3) Get the list of polygons that are
adjacent to the current polygon.

4) Check the class assignment for each
adjacent polygon. If any of them match
the defined adjacent class, select the
current polygon for display. If none
match, reject it.

The syntax for thisquery isshown and
explained on the next page.

.y

Building and Using Queries

Polygon Adjacency Query: Syntax

1|if (CLASS.Class == "SrD") then

2 begi n

3 array polylist [10]

4 nunpol ys = Cet Vect or Pol yAdj acent Pol yLi st (Vect, polylist)
5 for i =1 to nunpolys begin

6 pol ynum = polylist[i]

7 i f (Vect.poly[polynun.CLASS. Cl ass$ == "Sa")then
8 return 1

9 end

10 return O

11 end

12 |el se return O

1. Conditional selection of class SrD polygons for subsequent testing.

2. Begins the processing loop to check the class of adjacent polygons.

3. Defines a one-dimensional array called “polylist” to hold a list of the element numbers
of polygons that are adjacent to the current polygon. Initializes the array size at 10
elements (it is resized automatically by the function in the next statement).

4. Defines a variable “numpolys” that is assigned a value equal to the number of
polygons adjacent to the current polygon. This value is returned by the
GetVectorPolyAdjacentPolyList function, which also finds the element numbers of the
adjacent polygons and stores them in the “polylist” array. The predefined variable
“Vect” is used to indicate the current vector object.

5. Begins a processing loop to examine the class of each polygon in the array. The loop
is run once for each element in the array, beginning with the first position (array index
1) and continuing to the last position (specified by the current value of variable
“numpolys”). In each loop the variable “i” is assigned the value of the current array
index for use in the next statement.

6. Assigns the number of the current adjacent polygon (specified by its index in the
array) to the variable “polynum”.

7. Looks up the class of the current adjacent polygon and compares it to the specified
adjacent class. The database specification is in the form
“Object.database[record#].table.field”. (The "$” at the end of the database

specification indicates that the target ~
field is a string field.) If the classes
match, then... %
8. The “return 1" statement explicitly states
that the query is true for a polygon
satisfying the above condition, so the
polygon will be selected for display.

9. End of array processing loop.

10. If all adjacent polygons fail the class
test above, the “return 0” statement
states that the query is false.

11. End of polygon adjacency loop.

12. States that the query is false for a
polygon not meeting the initial class
selection condition in statement 1.

Polygons of class SrD that are
adjacent to those of class Sa.

il L T 9

page 22

Building and Using Queries

Census Boundaries in TIGER Data

Vector objects imported from the US Census
Bureau's TIGER / Line files are made up of line
segments representing natural and manmade phys-
ical features as well as governmental and census
boundaries. The boundaries of census tracts (and
equivalent Block Numbering Areas, or BNA's) and
their component censusblocksusually coincidewith
other map features and are not explicitly identified
by a Census Feature Class Code (CFCC) like the
basic map features.

Census block boundary lines can be selected for
display or extraction using aquery that selectslines
for which the block numbers on the left and right
sidearenot the same. Blocksthat have been subdi-
vided retain the same block number, but are identi-
fied by different lettersin left and right block suffix
fields; the second set of statements in the sample
query selects these boundaries. Finally, blocks in
adjacent BNA's can have the same number, so the
final statement selects lines separating different
BNA's.

]

]

]

)

STEPS

remove the layer
used in the
previous exercise

click the Add
Vector icon and El

select Add Vector Layer
from the dropdown
menu

select the aLameDA object
from the TiGer Project
File

in the Vector Object
Display controls window,
set the Style option in
the Lines panel to All
Same and the Select
option to By Query
open the Query Editor
window and choose New
from the File menu

use the Insert
procedures and / or
manual entry to create
the query shown below
click [OK] in the Query
Editor window

click [OK] in the Vector

or (Basic_Data.Block_Left
and Basic_Dat a. Bl ockSuf f _Left <>
Basi c_Dat a. Bl ockSuf f _Ri ght)

Basi c_Dat a. Bl ock_Left <> Basi c_Data. Bl ock_

Ri ght

Basi c_Dat a. Bl ock_Ri ght

or Basic_Data. BNANum Left <> Basi c_Dat a. BNANum Ri ght

Object Display
Controls
window

J
Raw TIGER / Line data
for a portion of Alameda
County, California.

The same area with
census block
boundaries selected

by query.

Building and Using Queries

Computed Fields from Multiple Records

STEPS

M minimize the Display
windows from the
previous exercise

M choose Edit / Attribute
Databases from the
TNTmips main menu

M navigate to and select
the cesolLs_LiTE object in
the cssoiLsq Project File

M turn on the Polygon
radio button in the
Select window

M in the Database Editor
window, right-click on
the box for Class table
and select Edit
Definition

M in the definition window
for the Class table, click
the Add Field icon
button

M in the field list,
highlight the default
name for the new field
and type ClassArea

M on the Field info panel,
select Computed from
the Field Type menu and
click Edit Expression

M enter the query shown
below in the Query
Editor window

+£

Scripts can aso be used to define the values for
computed fields in database tables. In many cases
these scripts need only create simple arithmetic
combinations of other fieldsin thesamerecord. The
task in this exercise is more complex: to create a
computed field in the polygon Class table for
cBsoiLs_LITE that shows the total area for each soil

type.

Polygon areas are stored in the POLY STATS table
for individual polygons, but we are creating the
computed field in the Class table, which has one
record for each soil type. The script shown hereis
designed to sum the polygon areasfor each soil class
and return that sum as the computed field value.

The script defines a numeric variable “sum” that is
usedto sumtheareasinthe POLY STATS.Areafield.
Thisvariablemust beinitialy reset to avalueof 0.0
for each class. The variable “num” is assigned a
value (for the current soil class) equal to the number
of attached recordsin the POLY STATStable. This
variableisused to set the number of iterationsof the
loop that sumsthe areas.

Table Info Field Info |Eunstraints |

£ X & &
Class £
Tasshrea

Field Type: Conputed — |Edit Eupr‘essinn...l

Width:| 12 Places:| &

sum = 0.0

num

end
return sum

Set Num(POLYSTATS[*])
for i =1 to num begin
sum = sum + POLYSTATS[i]. Area

Unit Type. .. [Constant
Units I Files Bons

- Read Only
- Hidden

B = (BSOTLS Lite / PolyData / CLAEE]

Table Edit Record Field Help

I Frimary Koy

I Eodesed

M click [OK] in the Query
Editor window

M enter 12 in the Width
text box and 2 in the
Places text box

M click [OK] in the
definition window

M double-click on the box
for the Class table to
open it

4 Fiedd

Class |Classfrea
—
~ < —o b 46905.84 X
oK o |6a , d56107.41 JJ
o | & _|gr 7 aosso.5a
> B 15397.76

. 0 BB 46659180

Class table with the " [BeD 135296, 16
added computed /@ e w7
& _|BaB 904674,86

field showing the = ign 2EanEs o4 #
T — =1
summed area for

each soil type.

M choose Table / Close to close
the Class table

page 24

Building and Using Queries

String Expression Fields

STEPS

A string expression field is a special type of
computed field in a database table. The simplest
useof astring expression field isto copy the contents
of astring fieldin another linked tableinto the current
table. The expression in that case is simply the
appropriate TABLE.FIELD reference. You canalso
use string expressions to merge the contents of
several string fieldsinto onenew field. For example
atable called NAME could have separate fieldsfor
first and last names. You can use the “+” (add)
operator to merge these strings. The expression
NAME.FIRST +“ " + NAME.LAST

would produce entries with the form “John Dog”.
The expression must include any separating
characters (spaces, commas) in quotes, as shown.
You can use a merged string expression field to
providetext for moreinformative Data Tipsor labels.

The expression you usein thisexercise employsthe
sprintf() function, which allows you to format
complex string expressions more easily. The first
function argument is a control string (in quotes),
whichisfollowed by the string field references. Each
of the “%s” entries in the control string stands for
one of thelisted string field references. The control
string can also incorporate inserted text, spaces, or

|

|

choose File / Open
Database on the
Database Editor window
navigate to and select
the cBsecT object in the
cB_secT Project File
turn on the Polygon
radio button in the
Select window

in the Database Editor
window, right-click on
the box for the Sections
table and select Edit
Definition

in the definition window
for the Sections table,
click on the Range field

in the list and
+Z

click the Add

Field icon button

in the field list, highlight
the default name for the
new field and type
SecTwpRng

select String Expression
from the Field Type
menu and click Edit
Expression

enter the query shown
below in the Query
Editor window

punctuation.

Sect i ons. Townshi p,

sprintf(“Sec % Twp % Rng %",
Secti ons. Range)

Sections. Secti on,

= Sections 0] o
b X = 5| Table Info Field Info | Constraints | =
oy - Field Type: String Ewpression — |Edit Expr‘essiun...ll
Tounship
e Width:| 25 Braesss| o o
SecTupRnz it Tupo. . [Cosstont
=(CBsect, 7 Polylata / Sections mEE)
Table Edit Record Field Help

Section |Township |Range |SecTwpRng

-

o 3 310 510 [Sec 34 Tup 31N Rng 51H Formatted
|38 31H 51 Sec 35 Tup 31H Rng 51H text created
CES 310 510 Sec 36 Tup 31H Rng 5IH by the string |
CIE] 320 510 Sec 13 Tup 32M Rng 51H |-/ .
o |14 B 51N Sec 14 Tup 32N Rng 5IH expression.
o |15 320 510 Sec 15 Twp 32N Rng 5IW
CW TS IR H1M___Sec 16 Tuo 32H Roe G147

=] i

click [OK] in the Query
Editor window

enter 25 in the Width
text box

click [OK] in the
definition window
double-click on the box
for the Sections table to
open it

choose File / Close from
both Database Editor

windows when you have
completed this exercise

page 25

Building and Using Queries

Queries to Check Digitizing Artifacts

Click the Select / Deselect Selection queries can aso be useful when you are

icon button and choose ; g - : .
Select by Query to open the creating or editing avector object usingthe TNTmips

standard Query Editor Spatiz_al Dgtg_l;ditor. Complex vector objects can
window so that you can contain digitizing errors such as line overshoots,
enter a query for that unclosed polygons, and sliver polygons. Many of

element type. these flaws are not visible except at high zoom

¥ /oo X Yor morth Fresno | evels, which makesmanual checking difficult and
/ﬁl 5 Yl %_I time-consuming. You can speed up the search for
Ald Ep——— potential topology problems by using selection
[l || Desslect ALL queries such asthe examples below. The Spatial
Al 2|3y Invert Selected | DataEditor window providesiconsthat allow you
o Retive Elen Select by Query..-§ t cregte and apply a selection query for a
Deszelect ALl Types .
—————— particular element type.

OVERSHOOTS

Overshoots are short line segments that incorrectly j!
extend beyond a line intersection. If you have run the
Standard Attributes process for the vector object, you
can use a selection query based on line length to select
all very short lines for examination and possible
removal:

LINESTATS.Length <[your length value]

UNCLOSED POLYGONS

In a vector object containing a network of polygons, a gap
between two lines that should intersect may leave a single
polygon where two separate polygons should exist. Lines
that fail to close a polygon can be found by query because
they have the same polygon on both sides:

Internal.LeftPoly == Internal.RightPoly

SLIVER POLYGONS

Double-tracing polygon boundaries can create
extraneous sliver polygons along the boundary of two
contiguous polygons. Sliver polygons usually have a
much smaller area than the main polygons, and are
usually highly elongate (with a high Compactness Ratio).
Use a combined query on the Area and CompactRatio
fields in the POLYSTATS table to select sliver polygons:

POLYSTATS.Area < [your areavalue] or
POLYSTATS.CompactRatio > 3.00

page 26

Building and Using Queries

A query executed from the Element Selection
window inthe Spatial Data Editor or in Spatial Data
Display often selects more than one element. One
of these sel ected elementsisdesignated the“ active’
element; the active and selected elements are
highlighted in different colors. Editing operations
can be applied to either the active or the selected
elements. You can use the Previous Selected and
Next Selected icon buttons on the Element Selection
window to step forward and backward through the
selected set of elements, making each one activein
turn. The view is automatically repositioned (if
necessary) to display the current activeelement. This
“pan by query” feature allowsyou to remain zoomed
into examine (and perhaps edit) each element while
easily stepping through the selected set.

=EGroup 1 - Group View 1 _[CI]

View Tool Legend¥iew GPS Options Help

L R ERE e Y =B EL]

Selected
element
Use the Previous Selected
and Next Selected icon Active
buttons to pan forward or — element

backward through the set of
selected elements. N
@ s VTEO?UX Algnedy County extract for H,..
?
k

]
AN

=

S 2[4 | 2] 167 of 1020 selected
\j 24| m| “v'il
|
/ \I i
- —i=
View:| 19,0 Scale:| 5000 | (] § |N'37 43 04,057 «vu 122 04 21
I

Tine to drauwi <1 Second

Pan by Query

STEPS

M restore the View and
Group Controls windows

M open the Vector Object
Display Controls window

M set the Select option in
the Lines panel to All
and click [OK]

M open the Options menu
in the Spatial Data
Display View window
and make sure that the
Show Scale / Position
option is turned on

M type “5000” in the Scale
text box at the bottom of
the View window, and
press <Enter>

M click the Show e
Details icon ~
button on the Layer icon
row

M click the Select M
icon button for
lines

M click the Select / u
Deselect icon LN
button for lines, and
choose Select by Query
from the dropdown
menu

M enter the following query
in the Query Editor:

LI NESTATS. Length < 50

M click [Apply] on the
Select by Query window

M click the Next
Selected icon i’l
button

The exercises in this Getting Started booklet have introduced the fundamentals
of the structure and syntax of database queriesfor usein TNTmips, TNTedit, and
TNTview. Thequery languageisasubset of the Spatial Manipulation L anguage
(SML) used in TNTmips, and shares the same syntax. In addition to the
documentation on queries cited on page 2, you may wish to consult the SML
documentation in TNTmips Reference Manual for additional programming hints

to expand your query capabilities.

page 27

Advanced Software for Geospatial Analysis

Microl mages, Inc. publishes acomplete line of proféssional: software for advanced geospatial”
datavisualization, analysis, and publishing. Contact usor visit our web sitefor detailed prod-
uct information,

TNTmips TNTmipsisaprofessional system for fully integrated GIS, image analysis, CAD,
TIN, desktop cartography, and geospatial database management.

TNTedit TNTedit providesinteractive tools to create, georeference, and edit vector,
image, CAD, TIN, and relational database project materialsin awide variety of formats..

TNTview TNTview hasthe same powerful display featuresas TNTmipsandis perfect for
those who do not need the technical processing andpreparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatia project materials on CD-
ROM at low cost. TNTatlas CDs can be used on any popular computing platform.

TNTserver TNTserver lets you publish TNTatlases on the Internet or on your intranet.
Navigate through geodata atlases with your web browser and the TNTclient Java applet.

TNTIlite TNTIiteisafreeversion of TNTmipsfor students and professionals with'small -+
projects. You can download TNTIlite from Microlmages web site, or you can order
TNTlite on CD-ROM.

I ndex
Gthmetic o]0/ = ([0]9 - element selection (continued) \ .

assignment statement..... sliver polygons.......c.coceeeevceeereenenenas 26 | .
COMMENES.....oevrereriinns undershoots........... .26
comparison operators..... Insert Field window......... .16

equal to, ==......... Insert Operator WindoW.........c..eeverereennens 5

greater than, >.......... logical operators (and, or, not).. ..10,14

not equal to, <> OPENING AGUENY.....eeverereeeereerereeseeseresaesenens 9

[o10] 0] =11 o1 PAN DY QUENY....oveeeceeeeee e 27
€coMPOUNd QUENIES.......ccvererrerrereereeeenes selecting See element selection

computed fields.............. . SAVING @ QUENY...eeeeeieeiieeeeeeeseeeeseee e 9
database query, defined SetNum function.........cccceveevveereeeinns 15

element selection string field......oooviiiiiiee 7
adjacent polygons..........ccccuveeeeennne 21,22 string expression field...........cccvevevinennns 25
DY QUENY....oieeeee e 3 string variables........oovveevveecersceens 13
island polygons................ .17 styleby script....... .3,18,19
multiple attached records.... .16 syntax, checking......cccooveevevecenenscieseninns 8

OVErshootS.......cceevreeuenne .26 Table[*] expression........ccovevveeeereveeerennns 15
no attached records...... 15 TIGER dafa....cveeeeceieee e 23

\ polygon enclosing point...........ccceveeeee. 20 variables.....coeeciseee e 12,y {
B Microlmages, Inc.

=

u

I I 11th Floor - Sharp Tower

206 South 13th Street

Lincoln, Nebraska 68508-2010 USA

Voice: (402) 477-9554 email: info@microimages.com
FAX: (402) 477-9559 internet: Www:microimages.com

	Before Getting Started
	Welcome to Building and Using Queries
	Select by Querying a Single Field
	Using the Insert Operator Option
	Using the Insert Field Option
	Querying a String Field
	Checking Query Syntax
	Using Calculations in Queries
	Compound Queries
	Using the "not equal to" Operator
	Using Comments and Variables
	Using String Variables
	Using the Logical "not" Operator
	Checking Record Attachments
	Select using Multiple Attached Records
	Find Island Polygons
	Styling by Script
	Compound Style Scripts

	Queries on Topology
	Find the Polygon Enclosing a Point
	Polygon Adjacency Query: Logic
	Polygon Adjacency Query: Syntax
	Census Boundaries in TIGER Data

	Computed Fields from Multiple Records
	String Expression Fields

	Queries to Check Digitizing Artifacts
	Pan by Query
	Index

