
Building Dialogs in SML

page 1

Tutorial

Building
Dialogs in SML

in

TNTmips®

TNTedit™
TNTview®

S
M
L

D
I
A
L
O
G
S

Building Dialogs in SML

page 2

Before Getting Started

It may be difficult to identify the important points in some illustrations without a
color copy of this booklet. You can print or read this booklet in color from
MicroImages’ Web site. The Web site is also your source for the newest Tutorial
booklets on other topics. You can download an installation guide, sample data,
and the latest version of TNTlite.

http://www.microimages.com

For complex SML scripts that process multiple input objects and require user
input for numerous parameter settings, consider creating custom dialog windows
to streamline user interaction with the script. You can use two different approaches
to constructing custom dialogs, each of which provides access to all the major
types of dialog controls. This booklet shows you how to construct custom dialogs
and how to use them with an SML script.

Prerequisite Skills This booklet assumes that you have completed the exercises in
the Displaying Geospatial Data, Navigating, and Writing Scripts with SML tuto-
rial booklets. Those exercises introduce essential skills and basic techniques that
are not covered again here. Please consult those booklets and the TNTmips Ref-
erence Manual for any review you need.

Sample Data The exercises presented in this booklet use sample data that is dis-
tributed with the TNT products. If you do not have access to a TNT products CD,
you can download the data from the MicroImages web site. In particular, this
booklet uses sample files in the SMLDLG and CB_DATA sample data collections.

More Documentation This booklet is intended only as an introduction to creating
dialog windows in SML scripts. Consult the TNTmips reference manual and
especially the online SML Reference for more information about dialogs using
Motif widgets. The Reference Guide to SML Dialog Specifications in XML is
available from the MicroImages web site and is also included as an appendix in
electronic versions of this tutorial booklet.

TNTmips and TNTlite® TNTmips comes in two versions: the professional version
and the free TNTlite version. This booklet refers to both versions as “TNTmips.”
If you did not purchase the professional version (which requires a software li-
cense key), TNTmips operates in TNTlite mode, which limits object size and
enables data sharing only with other copies of TNTlite.

All the exercises can be completed in TNTlite using the sample geodata provided.

Randall B. Smith, Ph.D.,12 June 2003
©MicroImages, Inc., 2003

Building Dialogs in SML

page 3

STEPS
choose Process / SML /
Edit Script... from the
TNTmips main menu to
open the Spatial
Manipulation Language
editor window

Welcome to Building Dialogs in SML
You can use the Spatial Manipulation Language
(SML) to write many types of custom programs that
operate on the geospatial data objects in your TNT
Project Files. If you are writing a script for a one-
time processing operation, the processing parameters
and names of input and output objects and files can
be written explicitly into the script. But any script
you plan to reuse or provide to others should include
interactive dialogs to let the user select objects and
enter program parameters.

SML provides several ways for you to include inter-
active dialogs in your scripts. The Raster, Vector,
CAD, TIN, and File function groups each include
GetInput...() , GetOutput...(), and other functions that
pop up a dialog so the user can select or create ob-
jects and files as needed as the script is executed.
The functions in the Popup Dialog group provide
dialogs that prompt the user to enter numeric and
other types of parameter values. These functions are
easy to use, but each opens a separate transient dia-
log window, so a complex processing script might
require a barrage of popup dialogs.

You can make complex scripts
easier to use by creating one
or more custom dialog win-
dows that bring together
object selection and parameter
inputs. Custom dialog win-
dows in SML can include text
and icon pushbuttons, toggle
and radio buttons, text and
numeric fields, labels, menu
buttons, listboxes, and comboboxes, among others.
This booklet provides an introduction to building
custom dialog windows for use in your SML scripts.
It provides many sample dialog scripts and several
complete scripts that incorporate complex custom
dialog windows.

An example of a custom
dialog window. We will
examine this dialog and its
components in more detail
on a later page.

The two main methods for
creating custom SML dialogs
are outlined on page 4.
Dialog specifications in XML
are introduced on pages 5-
15 with examples of all
avaliable dialog elements.
Pages 16-19 describe how
to set up the script to
process the dialog
specification and open the
dialog. The optional use of
an XML Editor is discussed
on pages 20-21. Further
techniques for integrating the
dialog with the script are
illustrated on pages 22-27.
Dialogs constructed using
Motif widget classes are
discussed on Pages 28-31.

Building Dialogs in SML

page 4

STEPS
choose Insert / Function
press [Function Group...]
on the Insert Function
window
select Widget from the
scrolled list in the popup
Function Group window,
then press [OK[
scroll through the list of
Widget functions, then
press [Close]
choose Insert / Class
in the Insert Class
window, scroll down to
the bottom to locate the
Motif widget classes,
which begin with Xm
now scroll up to find the
generic GUI dialog
classes, which begin
with GUI.
close the Insert Class
window

Two Types of SML Dialogs

A simple dialog via OSF/
Motif classes. OK and
Cancel buttons must be
explicitly coded. Available
only in SML/X.

Dialog via an XML dialog
specification using GUI dialog
classes. OK and Cancel
buttons are automatically
provided. Available in either
SML/W (left, using native
Windows components) or
SML/X (right, using Motif
components).

SML provides two ways for you to create custom
dialog windows for your SML scripts. The older
method uses the Motif widget (dialog component)
set that is used to create all of the windows in the X
Windows versions of the TNT products. You use
SML functions in the Widget function group to cre-
ate dialog components and set their attributes using
members of the various widget classes (which begin
with the letters Xm). All dialog components (includ-
ing essential buttons such as OK and Cancel) must
be explicitly created in the script. This method is
not available in SML for Windows (SML/W), but
can be used on any supported computer platform
(Windows, MacOS X, UNIX, and Linux) under X
Windows (SML/X).

The newer method for creating custom dialogs lets
you create and arrange dialog components and set
their characteristics using a simple set of tags and
attributes in XML-formatted text. The dialog speci-
fication can be embedded in the script as a string
variable or read in from an XML file. The dialog
specification is interpreted by SML and mapped to a
set of generic dialog classes (each beginning with
GUI_) that use dialog components appropriate for
the operating environment. In the X Windows envi-
ronment (SML/X) the Motif widgets are used, but
in SML/W the dialog is constructed from native Win-
dows components. Essential buttons such as OK,
Apply, and Cancel are supplied automatically. In
most cases this method greatly simplifies the task of
creating custom dialog windows.

Building Dialogs in SML

page 5

STEPS
choose File / Open /
*.SML File..., navigate to
the SMLDLG directory, and
select GENDLG.SML.
run the script
when prompted to select
the dialog specification,
select HELLO.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
keep the Hello World
dialog open and proceed
to the next page

<?xml version="1.0"?>
<root>
<dialog id="hello" Title="Hello World">
<label>Sample Dialog Window</label>

</dialog>
</root>

A Simple Dialog Specification in XML

XML, the Extensible Markup
Language, is a generic
meta-language that allows
the creation of structured,
self-describing text. XML
supplies a structure and
syntax, but a specific set of
tags and attributes is
required to define the
meaning of the elements in
an XML file. MicroImages
has supplied such a set of
tags and attributes to identify
the various types of dialog
components and their
properties in each particular
instance where they are
used.

Because of their ease of use, we will first focus on
creating dialog specifications in XML. XML makes
use of tags (enclosed between < and > characters) to
delimit and identify elements of text data. In an SML
dialog specification in XML, the data elements iden-
tified by the tags correspond to specific components
of a dialog window, such as buttons and labels. Tags
occur in pairs, with a start tag and end tag enclosing
the relevant text.

As an example, look at the dialog specification for
the Hello World dialog window shown below. This
window consists of a label element and two
pushbuttons (OK and Cancel, which are supplied
automatically). The two <label> tags enclose and
identify the text to be used for the label on the dia-
log. Note that start and end tags use the same tag
name, but in the end tag it is preceded by the for-
ward slash (/) character.

Data elements in XML
can be nested inside
other data elements (in
one or more levels) to
indicate membership
in a group. This is a good match to the structure of a
dialog window, in which some window components
are contained within other components. In this ex-
ample the dialog element (which identifies the dialog
window as a whole) contains the label element. The
dialog is in turn contained within the root element,
which is the required top-level element in any dialog
specification.

For ease of editing and reading a dialog specifica-
tion, the start and end tags for “container” dialog
elements should be placed on separate text lines, with
the contained elements identified on intervening
lines. Different levels of indents should also be used
to clarify this nested, tree-like structure.

Building Dialogs in SML

page 6

Using Attributes for Tags
Start-tags can also include one or more attributes,
which are predefined keywords to which you can
assign a value. The assignment has the form:

In a dialog specification, each type of dialog compo-
nent has a predefined set of attributes. Each time
you use that component type, you can assign attribute
values to define the specific properties you want that
component to have. Attribute names are case-sensi-
tive, but you can list attributes in any order within
the start-tag.

Any dialog component can have an id attribute, a
unique identifier for that element. The value of an
id attribute can be any character string, but it must
be unique within the dialog. Use an id attribute for
the dialog element and any other element that your
script needs to access, such as to set or read values.

In the Hello World dia-
log, the dialog element
has an id attribute that
the script uses to create
and open the actual dia-
log window. It also has

a Title attribute that supplies the text for the window
title. The label element in the dialog could also have
an id attribute, but here it doesn’t need one. The
label text is simply a static part of the dialog, so there
is no need for the script to have any interactive ac-
cess to it. Therefore the id attribute is omitted.

In the next few pages we will examine several addi-
tional dialog windows and their specifications in
XML to illustrate the use of other dialog components.
We will then discuss methods for using a dialog speci-
fication with an SML script and how a script
communicates with the dialog window.

attribute = “value”

STEPS
examine the attributes
for the elements in the
dialog specification
click [OK] on the Hello
World dialog window to
end the script

<?xml version="1.0"?>
<root>
<dialog id="hello" Title="Hello World">
<label>Sample Dialog Window</label>

</dialog>
</root>

To conform to XML format
standards, the dialog
specification should begin
with a standard XML
Declaration specifying the
version of XML.

In order for SML to correctly
interpret the dialog
specification, it must follow
the simple syntax rules that
define a well-formed XML
document:

every element must have
both start and end tags
all attribute values must
be in quotes
elements may not
overlap

Building Dialogs in SML

page 7

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select TIGEROP.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the
Extraction Options dialog
window to end the script

<?xml version="1.0"?>
<root>
<dialog id="tigerop" Title="Extraction Options">
<label>Extract from TIGER:</label>
<togglebutton id="citybtn" Name="City Polygons"

Selected="true"/>
<togglebutton id="votebtn" Name="Voting Districts"

Selected="false"/>
<togglebutton id="congbtn" Name="Congressional Districts"

Selected="false"/>
</dialog>

</root>

Togglebuttons and Empty Tags
The Extraction Options sample dialog window has
a label and three togglebuttons. Each of these com-
ponents is represented by an element within the
dialog element in the dialog specification. Note that
these components are laid out from top to bottom in
the window, rather than from left to right. This is
the default layout order for components in a dialog.
Later we will see how you can control the layout
orientation.

Each togglebutton element in this example has three
attributes: id, Name, and Selected. The id attribute
is needed so that the SML script can find out
whether each togglebutton has been set or not. The
Name attribute specifies text for the label that is
automatically placed to the right of the button. The
Selected attribute lets you set the default state for
each button when the dialog window opens. The
button is pushed in (on) if you set Selected = “true”
and pushed out (off) if you set Selected = “false”.

Note that all of the information required to set up a
togglebutton is included in the start tag name and its
attributes. Unlike the label element, there is no other
text to be enclosed by separate start and end tags. In
this case the two tags can be combined into a single
empty tag. The slash character (/) that normally
begins an end tag is placed before the closing > char-
acter of an empty tag.

The dialog specifications
shown in this booklet are
color-coded for ease of
reading. Standard XML
formatting characters are in
blue, tag names are in purple
or red, attribute keywords
are in green, and attribute
values and other text are in
black.

Building Dialogs in SML

page 8

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select SELCOMP.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the Select
Composite dialog
window to end the script

Combobox and Items

<?xml version="1.0"?>
<root>
<dialog id="selcomp" Title="Select Composite">
<label>Select Composite Type:</label>
<combobox id="comptype" Default="24">
<item Value="24">24-bit composite</item>
<item Value="16">16-bit composite</item>
<item Value="8">8-bit composite</item>

</combobox>
</dialog>

</root>

The Select Composite sample dialog window in-
cludes a label and a type of menu control called a
combobox. A recessed box resembling an editable
text field shows the current menu selection, and a
small icon at the right side of the control is used to
drop down the menu choices.

The possible selections for any menu-type control
(combobox, listbox, and menubutton) are created in
a dialog specification by adding item elements within
the parent control element. In this example the
combobox control element includes three item ele-
ments that specify different types of color composite
raster. An item element resembles a label element in
that its start and end tags enclose the text for the
menu entry. However, an item element also has a
Value attribute. The text string you assign to this
attribute becomes the “value” of the combobox con-
trol when that menu item is selected. Each item in a
menu control therefore should have a different char-
acter string assigned for its value. The item value
strings in this example are numbers corresponding
to the bit-depths of the composites.

Menu-type controls that show the selected menu item
(combobox and listbox) have a Default attribute that
you can use to indicate which item should be the
default selection. Simply assign that item’s value
string as the value of the Default attribute. As an
alternative, you can use the item attribute Selected,
which is either “true” or “false”. If Selected=“true”,
that item is initially selected (overriding the Default

attribute of
the parent
control, if
any).

You can use the TNTmips
Text File Editor or any other
text editor to open and
examine the dialog
specification XML files used
in these exercises.

Building Dialogs in SML

page 9

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select RADIOGP.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the Select
Process dialog window
to end the script

Radiogroup and Groupbox

<?xml version="1.0"?>
<root>
<dialog id="radiogp" Title="Select Process">
<groupbox Name=" Process: " ExtraBorder="4">
<radiogroup id="processgp" Default="entire">
<item Value="entire" Name="Entire Scene"/>
<item Value="polygon" Name="AOI Polygon"/>
<item Value="manual" Name="Manual Selection"/>

</radiogroup>
</groupbox>

</dialog>
</root>

The Select Process sample dialog window includes
a hybrid type of control called a radiogroup. A
radiogroup is a group of small buttons (resembling
togglebuttons) in which only one button can be turned
on at a time. Turning on one button automatically
turns off any other button that was previously turned
on. So a radiogroup functions like a menu in which
all selections are constantly visible.

The specification for a radiogroup has the same struc-
ture as the other menu-type controls. The item
elements inside the radiogroup element provide the
names for the buttons (analagous to the entries in a
menu) and the value for the control when that button
is turned on. This example shows an alternative
method for specifying the text string for a menu item.
In the example on the previous page, the item name
was provided as text between start and end tags. In
the Select Process dialog, the items are specified
using empty tags with a Name attribute. Either
method can be used for any menu-type control.

This dialog also includes a groupbox, a simple rect-
angular frame around one or more other controls,
which can also be automatically provided with a la-
bel inside the top edge using a Name attribute. A
groupbox is one type of layout component in a dia-
log. A layout component does not provide any
program control, but merely aids in the layout of the
dialog window. Other layout components are shown
in later sample dialogs.

In the sample dialog
specifications in this booklet,
tags for control components
are shown in red and tags
for layout and main-level
dialog elements are shown
in purple.

Building Dialogs in SML

page 10

Numeric Fields and Layout Panes
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select TIGRDS.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the TIGER
Road Options dialog
window to end the script

<?xml version="1.0"?>
<root>
<dialog id="tigrds" Title="TIGER Road Options">
<label>Road processing options:</label>
<togglebutton id="getrds" Name="Extract Road Lines"/>
<togglebutton id="mkbuf" Name="Make Roads Buffer Zone"/>
<pane Orientation="horizontal">
<label>Buffer Distance:</label>
<editnumber id="buffdist" Width="4" Precision="0"

Default="100" MinVal="0"/>
<label>meters</label>

</pane>
</dialog>

</root>

The TIGER Road Options sample dialog window
introduces the layout element you will probably use
most often, the pane. A layout pane is simply an
invisible container in which you can place multiple
dialog components and control their arrangement.
The most important attribute of a pane element is
Orientation, which can be either “horizontal” or “ver-
tical”. The three components near the bottom of this
dialog window (two labels surrounding an editable
numeric field) are placed within a pane with hori-
zontal orientation, so the components are arranged

in order from left to right across the pane. If
the pane orientation is set to “vertical”, the ele-
ments within the pane are arranged from top to
bottom.

The numeric field is created using an
editnumber element in the dialog specification.
The Width attribute sets the width in typical
characters, while the Precision attribute sets the

number of digits after the decimal point (the default
is 6). The Default and MinVal attributes set the value
initially displayed in the field and the minimum al-
lowed value, respectively. There also an available
MaxVal attribute to set the maximum allowed value.
This control has no built-in label, so the dialog uses
a label element to the left of the field to label its
purpose and another to the right to identify the units.

An invisible layout pane with
horizontal orientation
contains these dialog
components.

Building Dialogs in SML

page 11

Pushbuttons and Listbox
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select LANGUAGE.XML in the
SMLDLG directory and click
[OK]
select several languages
in the listbox
compare the dialog
window to its
specification
click [OK] on the
Languages dialog
window to end the script

<?xml version="1.0"?>
<root>
<dialog id="language" Title="Languages">
<pane Orientation="horizontal">
<pushbutton id="dict" Name="Dictionary..."/>
<pushbutton id="file" Icon="CREATE_FILE"/>

</pane>
<label>Select languages:</label>
<listbox id="language" Height="4" SelectStyle="multi">
<item Value="english" Selected="true">English</item>
<item Value="french">French</item>
<item Value="spanish">Spanish</item>
<item Value="japanese">Japanese</item>
<item Value="german">German</item>

</listbox>
</dialog>

</root>

The Languages sample dialog window illustrates the
use of pushbuttons and a listbox. The upper pane of
the dialog includes two pushbuttons, one with a text
label and one with an icon. Use the Name attribute
for the pushbutton tag to specify the text for the but-
ton label or the Icon attribute to specify the name of
the icon to be used. The icon name must match an
iconid listed in the internal TNT reference files. To
see a complete list of the valid iconids, open the In-
sert Class window from the SML editor and select
the GUI_CTRL_TOGGLEBUTTON class. The
valid iconid values are listed under the iconid pa-
rameter of the CreateIcon() class method.

A listbox provides a list of selectable items. If the
value for the Height attribute is less than the number
of items, the box is provided with a vertical scrollbar.
A listbox can be set to allow the selection of more
than one of its items by using the SelectStyle attribute.
The default value “single” for this attribute permits
only one item to be selected at a time. The value
“multi” used in this dialog specification allows the
user to select multiple entries by simply clicking on
each one (clicking on an already-selected item toggles
it off). The value “extended” allows Windows-style
item selection by using the mouse with the SHIFT
or CTRL key.

Building Dialogs in SML

page 12

Menubuttons
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select PROCPTS.XML in the
SMLDLG directory and click
[OK]
click on the two menu
buttons in the upper part
of the dialog window
compare the dialog
window to its
specification
click [OK] on the
Process Selected Points
dialog window to end the
script

<?xml version="1.0"?>
<root>
<dialog id="procpts" Title="Process Selected Points">
<pane Orientation="horizontal">
<menubutton id="file" Icon="DESKTOP_FILE"

ToolTip="Text File...">
<item Value="open">Open Text File</item>
<item Value="close">Close Text File</item>

</menubutton>
<menubutton id="ptaction" Name="Point Action...">
<item Value="save">Save Coordinates to Text File</item>
<item Value="buffer">Compute Buffer Zone</item>
<item Value="polygon">Find Enclosing Polygon</item>

</menubutton>
</pane>

</dialog>
</root>

A dialog window can also include menubuttons, but-
tons that drop down a selection menu when pressed.
Like a pushbutton, a menubutton can have either an
icon or a static text label. Since a menubutton has
no way of showing which item is currently selected,
it is best used to launch one of several alternative
actions from the dialog.

The Process Selected Point sample dialog might be
used with a Tool Script that allows the user to select
points in a View window. It has two menubuttons,
one with an icon and one with a label. The two
menubuttons are inside a horizontal pane so they
appear side by side in the dialog window. Like other
menu controls, selections for a menubutton are reg-
istered using items within the menubutton element.

When you use an icon for a pushbutton, togglebutton,
or menubutton, you can use the ToolTip attribute to
set the text to be shown in the popup ToolTip when

the mouse cursor hovers over
the icon.

Building Dialogs in SML

page 13

<?xml version="1.0"?>
<root>
 <dialog Title="Name and Color" id="nmcolor">
 <pane Orientation="horizontal">
 <label>Enter Name:</label>

<edittext id="name" MaxLength="10" Width="10"/>
</pane>
<pane Orientation="horizontal">
<label>Choose Color:</label>
<colorbutton id="colorbtn" AllowTransparent="true"/>

 </pane>
</dialog>

</root>

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select NMCOLOR.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the Name
and Color dialog window
to end the script

Edittext and Colorbutton
The Name and Color sample dialog window shows
two additional types of controls, an edittext and a
colorbutton. An edittext control allows the user to
enter and/or edit a text string. The MaxLength at-
tribute specifies the maximum allowed length of the
string in characters, while the Width attribute speci-
fies the width of the editable field (in “typical”
characters). Text is aligned to the left side of the
field by default. To right-align the text, use the Jus-
tify attribute with the value “right”. The edittext
control does not have a built-in label.

Pressing the colorbutton control opens a standard
Color Editor window to allow the selection of a color

from a palette or by specifying
RGB, HIS or other color val-
ues. The selected color is
shown on the colorbutton after the selection dialog
is closed. The selected color is maintained in a
COLOR class structure as red, green, and blue val-
ues (each 0 to 100) and an optional transparency value
(also 0 to 100). The colorbutton control does not
have a built-in label.

Building Dialogs in SML

page 14

Using Tabbed Pages
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select FLOWPATH.XML in the
SMLDLG directory and click
[OK]
click on each of the
panel tabs to examine
the included controls
compare the dialog
window to its
specification
click [OK] on the Flow
Path and Buffer Zone
dialog window to end the
script

If you are creating a dialog window with many con-
trols, you can group controls together on separate
tabbed panels. To do so, you first create a book ele-
ment and create one or more page elements inside it.
Each page element corresponds to a tabbed panel.
The Name attribute value that you assign for each
page provides the text that is placed on the panel’s
tab. Controls can be placed and arranged within a
page just as in the main dialog or in any layout ele-
ment.

The Flowpath sample dialog provides an example
based on the control dialog for the Flowpath script,
one of the sample tool scripts distributed with
TNTmips. The two panels of this dialog are illus-
trated below, and the dialog specification is shown
on the facing page. This dialog places the book of
tabbed pages immediately inside the dialog element,
but the book could be placed inside any layout ele-
ment (except directly inside another book element).
One page includes a number of different types of
controls for general toolscript operations, while the
other page provides a set of colorbuttons to desig-
nate colors for different vector overlays created by
the script.

The FLOWPATH tool script
performs watershed analysis
operations on an elevation
model shown in a View
window, using seed points
placed in the window
interactively by the point tool
invoked by the script.

Building Dialogs in SML

page 15

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM “smlforms.dtd”>
<root>
<dialog id="flowpath" Title="Flow Path and Buffer Zone">
<book>
<page Name="Controls">
<pane Orientation="horizontal">
<pushbutton Name="Save" Icon="FILE_SAVE"

ToolTip="Save Output Layers..."/>
<pushbutton Name="Remove" Icon="CONTROL_SUBTRACT_CYAN"

ToolTip="Remove Output Layers"/>
<pushbutton Name="Number of Seedpoints..."/>

</pane>
<pane Orientation="vertical">
<togglebutton id="btnSnap" Name="Move Seed Point to

Flow Path" Selected="false"/>
<togglebutton id="btnFlow" Name="Compute Flow Path"

Selected="true"/>
<togglebutton id="btnBasin" Name="Compute Upstream

Basin" Selected="true"/>
<togglebutton id="btnBuffer" Name="Compute Buffer Zone"

Selected="false"/>
</pane>
<pane Orientation="horizontal">
<label>Buffer Distance: </label>
<editnumber id="buffDist" Width="5" Default="100"

Precision="0" MinVal="0"/>
</pane>

</page>
<page Name="Colors" Orientation="vertical">
<pane Orientation="horizontal">
<colorbutton id="fcolor"/>
<label> Flow path color</label>

</pane>
<pane Orientation="horizontal">
<colorbutton id="bacolor"/>
<label> Basin color</label>

</pane>
<pane Orientation="horizontal">
<colorbutton id="bucolor"/>
<label> Buffer zone color</label>

</pane>
<pane Orientation="horizontal">
<colorbutton id="bocolor"/>
<label> Extents box color</label>

</pane>
</page>

</book>
</dialog>

</root>

Specification for Flowpath Dialog

Building Dialogs in SML

page 16

STEPS
choose File / Open /
*.SML File... from the
SML editor window
select HELLOXML1.SML from
the SMLDLG directory
examine the script
repeat, but this time
select HELLOXML2.SML from
the SMLDLG directory
run the second script
press [OK] on the Hello
World sample dialog
window to end the script

Now that we have introduced the components of a
dialog and the structure of the dialog specification,
we can begin to examine how to use a specification
with an SML script. The dialog specification must
be read and interpreted when the script is run to cre-
ate an XML document structure in memory. This
structure is an instance of the class XMLDOC. The
specification can either be in a separate file or em-
bedded in the script. Different XMLDOC class
methods are used in these two situations to ingest
the specification and assign it to the class instance.
The two scripts for this exercise implement the Hello
World sample dialog and illustrate these two ap-
proaches (script excerpts below).

Script helloXML1.sml ingests the specification from
a separate file in the same directory using the

Read(xmlfile$) class
method in XMLDOC.

This method reads the file and parses the text to
create the XML structure in memory. The filename
passed to the Read() method must include the full

directory path to the file as well as the file extension.
The filename string is constructed in this example
by a string expression using the script’s CONTEXT
class structure. The class member _context.ScriptDir
provides the path to the directory containing the cur-
rent SML script. The string expression concatenates
the path with the name of the file.

The sample script helloXML2.sml has the dialog
specification embedded within it, assigned to a string

variable. Note the single quotation marks en-
closing the specification,
which enable multiple
lines of text to be used

within the assignment statement. The string vari-
able is then passed to the XMLDOC class method
Parse(xml$), which interprets the text and creates
the XMLDOC class instance in memory.

helloXML1.sml

string xmlfile$;
xmlfile$ = _context.ScriptDir + "/hello.xml";

class XMLDOC dlgdoc;
dlgdoc.Read(xmlfile$);

helloXML2.sml

string xml$;
xml$='<?xml version="1.0"?>
<root>
<dialog id = "hello" title="Hello World">
<label>Sample Dialog Window</label>

</dialog>
</root>';

class XMLDOC dlgdoc;
dlgdoc.Parse(xml$);

Using an XML Dialog Specification

Building Dialogs in SML

page 17

STEPS
examine the second half
of the HELLOXML2.SML

script

Creating and Opening the Dialog Window

class XMLNODE dlgnode;
dlgnode = dlgdoc.GetElementByID("hello");

class GUI_DLG dlgwin;
dlgwin.SetXMLNode(dlgnode);
dlgwin.DoModal();

The XML structure created in memory by the Read()
or Parse() method of class XMLDOC contains all of
the elements in the dialog specification in a hierar-
chical, tree-like structure. Each element, including
the dialog element itself, can also be thought of as a
“node” in the structure. To create and open the dia-
log window, your SML script must retrieve the dialog
node from the parsed XML document structure and
identify it as the source for the dialog window.

The two scripts you ran on the previous page differ
only in how they ingest the dialog specification; the
second half of each (excerpted below) is identical,
and implements the steps outlined above. The dia-
log node in the Hello World specification has the
unique id attribute “hello” that can be used to re-
trieve it. This is done using
the XMLDOC class method
GetElementByID(), which
returns an instance of class
XMLNODE. This is the
class that represents any
given node in a parsed XML document. In this script
the dialog node is represented by the class variable
dlgnode.

The dialog window itself is an instance of class
GUI_DLG, represented in this script by class vari-
able dlgwin. The class method SetXMLNode() in
class GUI_DLG is used to identify the dialog node
in the XML structure as the source for the dialog
window. The final script statement uses the
GUI_DLG class method DoModal() to create and
open the dialog window. This method opens the
window as a modal dialog, meaning that the dialog
takes control and does not allow any other parts of
the script to be executed until the dialog is closed.
Modal dialogs are the most appropriate form for most
SML applications.

Nonmodal dialogs allow
other program operations
and user interactions to
continue while they are
open, but require explicit
management by the script. A
nonmodal dialog window is
automatically provided with
Apply and Close buttons.
Two GUI_DLG class
methods are used to create
and then open a nonmodal
dialog: CreateModeless()
and Open().

A modal dialog window
created using an XML
specification is automatically
provided with OK and
Cancel buttons.

Building Dialogs in SML

page 18

Trapping XML Errors
STEPS

choose File / Open /
*.SML File... and select
XMLERRS1.SML from the
SMLDLG directory
run the script; note that it
ends without opening the
dialog but does not
report any errors
choose File / Open
again, and select
XMLERRS2.SML

in the Message window
that opens, press the
Details button
press the [OK] button on
both Message windows
to end the script

numeric errXML;
class XMLDOC dlgdoc;
errXML = dlgdoc.Read(xmlfile$);

if (errXML < 0) {
PopupError(errXML);
Exit();
}

In order for SML to interpret a dialog specification
correctly, the specification must be well-formed,
meaning that it uses the proper notation for tags and
attributes and has the nested structure expected of
an XML document. The syntax of the dialog speci-
fication is checked by the Read() or Parse() class
method when the script is run, but XML syntax er-
rors are not automatically reported to you by SML.
The excerpt of script xmlerrs2.sml below shows how
you can get an XML syntax error report.

The Read() and Parse() class methods return a nu-
meric value that is an error code (a negative value) if
there are XML syntax errors or 0 if there are no er-
rors. The sample script assigns the returned value to
a numeric variable errXML, then checks the value of
the variable. If errXML is less than 0, the error value

is passed to the PopupError() function,
which opens a Message window report-

ing that there is an XML syntax error. If you press
the Details button on this window, a second mes-
sage window opens and lists the errors.

The specification read by the
two sample scripts in this ex-
ercise (excerpted below) is a
copy of the groupbox/radiobox

dialog specification de-
scribed previously, but the
closing double quotation
mark is omitted for the
Value attribute value in the
third radiogroup item. Sub-

s e q u e n t
portions of the
specification
cannot be in-
t e r p r e t e d

correctly, triggering a number of error listings in the
details message window.

<radiogroup id="processgp" Default="entire">
<item Value="entire" Name="Entire Scene"/>
<item Value="polygon" Name="AOI Polygon"/>
<item Value="manual Name="Manual Selection"/>

</radiogroup>

The closing quotation mark
is missing for the Value
attribute.

Building Dialogs in SML

page 19

STEPS
choose File / Open /
*.SML File... and select
XMLERRS3.SML from the
SMLDLG directory
run the script; note the
error message that
appears
press [OK] on the
message window to end
the script

<?xml version="1.0"?>
<root>
<dialog id="dlg" Title="Select Process">

class XMLNODE dlgnode;
dlgnode = dlgdoc.GetElementByID("radiogp");

if (dlgnode == 0) {
PopupMessage("Could not find dialog node in XML document");
}

The dialog id attribute value
in the specification does not
match the id value expected
by the script.

Even if the dialog specification is well-formed XML,
there may be errors in the use or spelling of attribute
names and values that cause the layout of the dialog
to be incorrect. Most such errors are not detected or
reported when the dialog specification is interpreted
by SML. If you are using the SML editor or a text
editor to create the dialog specification, you should
carefully examine the spelling and use of attribute
names and values to ensure that they are consistent
within the specification and script and that they con-
form to the usage rules outlined in the Reference
Guide to SML Dialog Specifications in XML. The
Guide lists the attributes that are predefined for use
with each dialog element. Valid values are also listed
for those attributes that have a fixed set of possible
values.

Problems with at-
tribute names may
also prevent the dialog
from opening at all. In the example used for this
exercise, the dialog element id values in the dialog
specification and the SML script do not match. The

script excerpt shown here illustrates how
the script can check for this condition. The
GetElementByID() method in class
XMLDOC returns a valid instance of class
XMLNODE if the specified dialog id is
found. If it is not, the class instance returned is empty.
In SML an empty class instance can be represented
by the numeric value 0. The script excerpt compares
the returned class to 0 and if the comparison is true
it opens a message window stating that the dialog
node was not found.

Trapping Dialog ID Errors

The Reference Guide to
SML Dialog Specifications in
XML is available from the
MicroImages web site and is
appended to electronic
versions of this booklet.

Performing a manual syntax
check from the SML editor
window (Syntax / Check...)
does not evaluate the XML
syntax of any embedded or
referenced dialog
specification.

Building Dialogs in SML

page 20

Using an XML Editor

<!-- SMLFORMS DTD Version 1.0 -->
<!-- For use with SML Dialog Specifications in XML -->
<!-- MicroImages, Inc. -->

<!-- ======================================= -->
<!-- MAIN ELEMENTS -->
<!-- ======================================= -->

<!ELEMENT root (dialog | script)* >
<!ELEMENT script (#PCDATA)>
<!ELEMENT dialog (book | pane | groupbox | label | pushbutton |
togglebutton | colorbutton | edittext | editnumber | radiogroup |
combobox | menubutton | listbox)*>

Excerpt showing
the beginning lines
of the SMLFORMS
DTD file, defining
the main elements
<root>, <script>,
and <dialog>.

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
<dialog>
</dialog>

</root>

Dialog Specification Template File
(dlgtempl.xml) containing the
Document Type Declaration and
<root> and <dialog> elements.

You can create embedded dialog specifications directly with the SML editor or
create separate dialog specification files with any text editor. But you may find it
easier to create your specifications using a specialized XML editor. A number of
free, shareware, and commercial XML editors are available for download via the
World Wide Web. Nearly all XML editors can check that the XML is well-formed,
and many provide a graphical Tree View of the document structure that simplifies
editing. Some editors can compare the XML to a document model that specifies
the available tags, their allowed attributes, and the relationships permitted be-
tween elements (for example, the only allowed child element of a <combobox> is
an <item>). An XML file that conforms to its document model is said to be valid,
and the checking procedure is called validation. The most widely-supported form
of XML document model is a Document Type Definition (DTD). MicroImages
has created a DTD for dialog specifications (smlforms.dtd) that can be found in
the SMLDLG directory. An excerpt of this file is shown below.

MicroImages has also provided a Dialog Specification Template File (dlgtempl.xml,
shown below) that you can open in a validating XML editor to create your dialog
specifications. The template includes the <root> and <dialog> elements preceded
by a Document Type Declaration that defines the name of the root element (<root>)
and the name of the DTD and its location (in the same directory as the XML file
being edited). Most validating XML editors read the DTD and provide menus of
valid elements that can be inserted into the current element, menus of attributes

available to be added for
each type of element, and
menus of attribute values
for those attributes that
have a fixed set of valid
values.

Building Dialogs in SML

page 21

An Example of a Validating XML Editor
Xerlin is a free, open-source
XML editor that is available for
download at www.xerlin.com. It
is written in Java and will run on
any computer platform that has
the Java 2 runtime environment
installed (Java SDK 1.2.2 or
higher, available for free down-
load from java.sun.com/j2se/).
Xerlin allows you to easily cre-
ate a valid dialog specification
using the SML dialog specifica-
tion DTD. It provides a tree view
that allows you to select dialog
elements with the mouse and edit
or add elements to the selected
one using the right mouse button.

When you are adding an element,
the Add option provides a
submenu showing
all dialog elements
that are valid as
children of the se-
lected element.
The available at-
tributes for the
selected element
are listed in the
right-hand panel
of the window.
Attribute values
can be filled in as
needed or selected
from dropdown
combobox-style
menus.

Xerlin editor with
the dialog template
file loaded. Dialog
elements can be

added or edited
using right
mouse button
menus.

Xerlin editor with the Flowpath dialog specification
loaded. Available attributes are listed for the
selected element on the panel to the right.

Tree view of
dialog spec-
ification.

Menu of valid
values for the
HorizResize
attribute.

Another free, validating, Java-based XML editor that works well is XMLmind Standard
Edition, available for download from www.xmlmind.com/xmleditor.

Building Dialogs in SML

page 22

Using Callbacks
STEPS

choose File / Open /
*.SML File... and select
BONJOUR1.SML from the
SMLDLG directory
run the script
select a language from
the listbox
a translation of “Hello!” is
printed to the Console
window in the selected
language
repeat using a different
language
examine the callback
procedure in the script
press [OK] on the
Bonjour! sample dialog
window to end the script

You can also program controls in a custom dialog
window to initiate actions through the use of call-
backs, which are pointers to procedures or functions
defined in the script. Each type of control element
in a dialog (including the dialog element itself) can
have one or more types of callback, each of which is
a predefined attribute of the control’s tag in the dia-
log specification. Each callback type is activated
(called back) by the control in response to a specific
circumstance, and the callback attribute is named to
indicate that circumstance. For example, editnumber
and edittext controls can each have an OnChanged
callback (invoked when the control value is changed)
and an OnActivate callback (invoked when the user
presses [Enter] with the cursor in the edit control.
Callbacks can be used to change the state of other
controls in the dialog or to perform specific opera-
tions on data being processed.

In this example, the OnChangeSelection callback for
the listbox control calls a script procedure
[SayHello()] that prints “Hello!” to the console win-
dow in the selected language when the listbox
selection changes. The OnOpen callback for the dia-
log window points to the same procedure so that the
default language (French) is used to print “Bonjour!”
when the dialog first opens. The first part of the
dialog specification, which includes the callback at-
tribute assignments (circled), is shown below.

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
<dialog id="hello" Title="Bonjour!" OnOpen="SayHello()">
<pane>
<groupbox Name="Language" ExtraBorder="4">
<listbox id="listbox" SelectStyle="single" Height="3"

Default="French" OnChangeSelection="SayHello()">

NOTE: The predefined callback attributes available for each dialog control and
the circumstances under which each is activated are described in the Reference
Guide to SML Dialog Specifications in XML.

Building Dialogs in SML

page 23

Getting Values from the Dialog
STEPS

choose File / Open /
*.SML File... and select
GETDATA.SML from the
SMLDLG directory
run the script
in the TIGER Road
Options dialog, set the
Road processing options
and edit the Buffer
Distance field, then press
OK
note the dialog values
printed to the SML
Console Window
examine the script
examples of the four
methods of reading
values from the dialog
press [OK] on the TIGER
Road Options sample
dialog window to end the
script

One main role of a dialog window is to record pa-
rameter choices and values for later use by the SML
script. The script for this exercise shows several dif-
ferent methods you can use to get values and settings
from a dialog window, in this case from the TIGER
Road Options dialog described on a previous page.
When you press OK, a procedure assigned to the
dialog’s OnOK callback prints the control value set-
tings to the SML console window. The settings are
retrieved in four different ways that are described
briefly below.

The first approach gets all of the dialog control set-
tings at once using the GetValues() class method in
class GUI_DLG (the dialog window class). The val-
ues are returned as an instance of class
GUI_FORMDATA, which you must have previously
declared. You can then use GetValueNum() and
GetValueStr() methods in the latter class to read out
the stored values (as a number or as a string, respec-
tively) as needed.

The second approach uses methods in class
GUI_DLG to get the value for each control from
the dialog individually using the control’s id:
GetCtrlValueNum(id) and GetCtrlValueStr(id).

The third and fourth approaches use the
GetCtrlByID(id) method in class GUI_DLG to
get a handle for each con-
trol, then a GetValue(),
GetSelected(), or other
similar method from the in-
dividual control class to get
the control’s setting. The
control handle can be stored as a control class in-
stance that is then used to get the setting, or the
methods to get the control handle and its value can
be strung together, omitting the control handle class
variable (a more compact but perhaps less obvious
approach).

Settings for modal dialog
windows should be retrieved
by callback procedures for
individual controls or by the
dialog’s OnOK callback
procedure.

Building Dialogs in SML

page 24

Using the Script Tag

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
<dialog id="hello" Title="Bonjour" OnOpen="SayHello()">
... [layout and control specifications omitted] ...

</dialog>
<script>
<![CDATA[
proc SayHello () {
clear();
local string language$;
language$ = dlg.GetCtrlValueStr("listbox");

if (language$ == "English") then
print("Hello!");

else if (language$ == "French") then
print("Bonjour!");

else if (language$ == "German") then
print("Hallo!");

else if (language$ == "Spanish") then
print("Hola!");

}
]]>

</script>
</root>

STEPS
choose File / Open /
*.SML File... and select
BONJOUR2.SML from the
SMLDLG directory
runt the script as you did
in the last exercise

beginning CDATA delimiter

ending CDATA delimiter

The SML code executed by a dialog’s callbacks can
reside in the main SML script (as in the previous
exercise), or within the dialog specification file it-
self. The <script> element in a dialog specification
is defined as a container for SML code. This is a
main-level element within the root element of the
file. The <script> element can include the code for
one or more callback procedures. Any global vari-
ables or functions you define in the main SML script
are also available for use by the code in the dialog
specification’s <script> element.

The example in this exercise uses the same dialog as
the preceding exercise. The only difference here is
that the SayHello() procedure is in the <script> ele-
ment of the dialog specification (excerpted below).

The SML code for your
callbacks might contain
characters (such as <, >,
and &) that have special
significance in XML
syntax. For this reason
the SML code should be
enclosed within CDATA
delimiters as shown. They
tell the XML parser that the
enclosed section should
be treated as regular text
(“character data”) that
should not be interpreted
with XML syntax rules.

Building Dialogs in SML

page 25

Changing Control Settings in Callbacks
STEPS

choose File / Open /
*.SML File... and select
AREACALC.SML from the
SMLDLG directory
examine the procedure
and function definitions
in the script
run the script
enter an area value in
the upper numeric field
select input and output
area units from the
combobox controls
press [OK] to compute
the output area
when you are finished,
press [Cancel] to close
the dialog and exit the
script

You can also use callbacks to show the results of
computations in the dialog and to change the status
of other dialog controls. The script for this exercise
performs area unit conversions using a value you
enter in an editnumber control and input and output
units you select from combobox controls. The out-
put area is computed and shown in an edittext control
when you press the [OK] button. The edittext is set
to be read-only, which disables manual editing of
the output value. When you enter a new input area
or select different area units, callbacks for those con-
trols clear the output edittext control.

You can change control settings using class meth-
ods in either the dialog window’s class (an instance
of GUI_DLG) or the individual control classes. The
OnOK callback function for this dialog window
[called Recalculate()] uses the method
SetCtrlValueStr(id) in class
GUI_DLG to set the value
for the output area edittext
control. The callback proce-
dures for the input area
editnumber control and the
two combox controls use the ClearValue() method
in class GUI_CTRL_EDIT_STRING to blank the
edittext control when you change any of the other
control settings.

In order to force the Area Unit Conversion window
to stay open after the OK button is pressed, the OnOK
callback for the dialog element is defined in the script
as a function that returns the value 0 (after its other
operations are complete). In addition, the attribute
assignment for the OnOK call-
back in the dialog specification
must have the keyword “return”
preceding the function name, as
shown in the excerpt to the
right.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
 <dialog id="areacalc"

Title="Area Unit Conversion"
OnOK="return Recalculate()">

The AREACALC script also
prints the output units, scale
factor for the units
conversion, and the output
area value to the Console
Window.

Building Dialogs in SML

page 26

Managing a Complex Dialog Window
STEPS

choose File / Open /
*.SML File... and select
PANSHARPCOMP.SML from
the SMLDLG directory
run the script
in the Make Pan-
Sharpened Color
Composite window,
press [Red...]
use the Select Object
dialog to navigate into
the BIGPINE Project File in
the SMLDLG directory and
select raster BAND_3
press [Green...] and
select raster BAND_2
press [Blue...] and select
raster BAND_1
press [Pan...] and select
raster BAND_8
choose a Color Blending
Mode and a Composite
Type
press [OK] to name an
output color composite
raster and run the
process
examine the script

The script in this exercise provides an example of a
fully-functioning processing script that creates a rela-
tively complex custom dialog window to manage its
inputs. The script creates a pan-sharpened color-
composite raster from three bands of a multispectral
image and a higher-resolution panchromatic
(grayscale) image, each of which is selected using a
pushbutton. Read-only edittext controls are used to
show the file and object names for each of the se-
lected input objects. The dialog provides
togglebuttons that allow you to apply a saved con-
trast table (if present) to each input raster, a listbox
to select from three color blending modes, and a
combobox to choose the bit-depth of the output color
composite.

The dialog specification for the Make Pan-Sharp-
ened Color Composite window is embedded in the
SML script. The dialog controls and their callbacks
are designed to lead the user through the controls in
proper sequence. Only the Red... and Cancel but-
tons are intially active. (The dialog specification
sets an Enabled attribute to 0 for the Green..., Blue...,
and Pan... pushbuttons and for all of the Apply Con-

trast toggle buttons so that
these controls are initially
dimmed and disabled. An
OnOpen callback for the dia-
log window disables the OK
button when the window first
opens.) The OnPressed call-
back for the Red... pushbutton
enables its Apply Contrast
toggle button as well as the

Green... pushbutton. Pressing each successive in-
put raster button activates the next one, until pressing
the Pan button activates the dialog’s OK button.

Building Dialogs in SML

page 27

STEPS
choose File / Open /
*.SML File... and select
DEVEG68.SML from the
SMLDLG directory
run the script
in the dialog window that
opens, press [select
NIR...], navigate into the
INYOTM Project File in the
SMLDLG directory, and
select BAND_4
press [Select RED...]
and select BAND_3
turn on the Devegetate
NIR and Devegetate
RED toggle buttons
type “3” into the “Number
of additional bands to
devegetate” field and
press <Enter>
press [Select Bands...]
select BAND_1, BAND_2,
and BAND_5
press [Set dark pixel
values...]
press [OK] in the Set
Dark Pixel Values
window that opens
press [Select Output
File...] and name a new
Project File to contain
the output objects
press [Directory...] and
select the directory in
which TNTmips is
installed
press [OK] to start
processing

Dynamically Adding Dialog Components
The script in this exercise is designed to modify cell
values in a set of multispectral image bands to sup-
press the contribution of vegetation. Most processing
parameters are set on the main dialog window (shown
below). However, each band to be processed must
also be corrected for additive brightness effects of
atmospheric haze by subtracting a “dark pixel value”
(determined by the user) from each cell value. These
values are set using a second dialog opened by the
OnPressed callback procedure [SetDP()] for the Set
dark pixel values... pushbutton. The Set Dark Pixel
Values window lists the bands (filename and object
name) and provides an editnumber field showing a
default dark pixel value (the minimum cell value for
the raster). The tricky part is that the number and
selection of bands to be processed can vary.

The SetDP() procedure includes only a skeletal dia-
log specification with the dialog title, labels at the
top, and the groupbox with a contained pane to hold
all other controls. The procedure parses this skeletal
specification, then modifies the XML structure in
memory to add a series of horizontal panes, each
containing a text label and an editnumber control.
These changes are made using methods in class
XMLNODE: NewChild(), SetAttribute(), and
SetText(). The completed dialog is then opened.

Building Dialogs in SML

page 28

A Simple Dialog Using Widget Classes
STEPS

choose File / Open /
*.SML File... and select
WIDGET1.SML from the
SMLDLG directory
run the script
study the script sections
that define the different
parts of the Hello World
dialog window
press [Close] on the
Hello World window

We will now consider some examples of custom dia-
log windows constructed using Motif widget classes.
Although this method is more cumbersome than us-
ing dialog specifications in XML, widget classes
allow for more complex dialog designs not currently
available through XML.

The sample script in this exercise creates and opens
a very simple dialog window that displays a label
string and has a Close button. Each of these compo-
nents is a separate widget contained in an XmForm
widget. An XmForm widget lets you place its "chil-
dren" (contained widgets) using a simple relative
positioning scheme. Each widget can be attached
to another widget on its top, bottom, left, and right,
and you can specify an offset value (in screen pix-

els) for each side as well. In this example
the label widget (class XmLabel) is at-
tached to the form on its top, left, and
right sides. The Close Button (class
XmPushButton) is attached at its top to
the label widget and on the left and right
sides to the form. The form widget au-
tomatically resizes to accommodate all
of the contained widgets.

Control widgets can have one or more
callbacks relating to different control ac-
tions. Class XmPushButton, for
example, has an ActivateCallback class
member that is invoked by pressing the
button. For most types of controls, you
register a procedure or function in your
script with a particular control callback
by using the WidgetAddCallback() func-
tion. This function takes a widget
callback class followed by the name of

the procedure. In this dialog, activating the Close
button calls the OnClose() procedure defined at the
beginning of the script.

WIDGET1.SML
Sample script for Building Dialogs in SML.
Creates and opens a simple dialog window
using Motif Widget classes.

Define parent widget for dialog window.
class XmForm win1;

Procedure for closing window
proc OnClose() {

DialogClose(win1);
DestroyWidget(win1);
}

Set up dialog window
win1 = CreateFormDialog(“Hello World”);
win1.MarginHeight = 5;
win1.MarginWidth = 5;

Create label text for window
class XmLabel winLabel;
winLabel = CreateLabel(win1,”Sample Dialog Window”);
winLabel.TopWidget = win1;
winLabel.LeftWidget = win1;
winLabel.LeftOffset = 10;
winLabel.RightWidget = win1;
winLabel.RightOffset = 10;

Create Close button attached to label on
on top and to window margin on left and right
class XmPushButton closeButton;
closeButton = CreatePushButton(win1,”Close”);
closeButton.TopWidget = winLabel;
closeButton.TopOffset = 5;
closeButton.leftWidget = win1;
closeButton.rightWidget = win1;
closeButton.bottomWidget = win1;
WidgetAddCallback(closeButton.ActivateCallback,OnClose);

Open dialog window and keep script active
until window is closed.
DialogOpen(win1);

DialogWaitForClose(win1);

Building Dialogs in SML

page 29

PushButtonItem in
XmForm button row

XmSeparator

XmOptionMenu

XmLabel

PromptNum
(includes
label)

XmLabel

XmFrame
with child
XmForm

Widget classes used to create the Area Unit Conversion dialog window

XmForm
(dialog window)

STEPS
choose File / Open /
*.SML File and select
WIDGET2.SML from the
SMLDLG directory
run the script
in the dialog window
opened by the script,
enter a value in the Enter
Area Value field
choose an input area unit
from the upper unit menu
choose an output area
unit from the lower unit
menu
Press the Convert button
study the script sections
that define the different
window components and
actions
click [Close] when you
are finished working with
the dialog window

Sample script WIDGET2.SML creates a more complex
dialog window that is similar to the one created via
an XML specification in the AREACALC script. The
dialog uses a variety of widget types, including la-
bels, a field for entering a numeric value, a frame
(similar to a groupbox), a separator line, and two
option menus. The menus are used to select input
and output area units, and are populated automati-
cally from TNT reference files using a
CreateUnitOptionMenu() function that creates an
instance of the XmOptionMenu widget class. The
computed area is output to a text label.

The buttons at the bottom of the window use a dif-
ferent widget class than the button in the previous
script. They are instances of class PushButtonItem,
which can be used for either text buttons or icon
buttons. Text buttons must be placed in a button
row, a specific type of XmForm, and icon buttons
must be placed in an XmRowColumn widget, a type
of container widget that lets you layout widgets in a
grid.

You don't need to use the WidgetAddCallback() func-
tion to define the action of a PushButtonItem; the
function that defines the item requires the name of
the callback function or procedure as one of its argu-
ments. The unit option menu widget also uses the
latter method to define the procedure called when
the unit is changed.

A Dialog Using Varied Widget Classes

An XmForm is a generic
container widget. A dialog
window is an XmForm, and
you can use additional
XmForm widgets within the
dialog like layout panes to
organize and align controls.
You can also create a
scrolled window using the
XmScrolled Window widget
in place of the main
XmForm.

Building Dialogs in SML

page 30

Creating and Using a Drawing Area
STEPS

choose File / Open /
*SML File and select
DRAWDLG.SML from the
SMLDLG directory
run the script
study the script sections
that define the different
window components and
actions
click [Close] when you
are finished working with
the dialog window

In some instances you may want to design a dialog
window that incorporates a graph created from your
input data or from the process output, or some other
graphic. Numerous functions in the Drawing func-
tion group allow you to draw lines, geometric shapes,
and text, and to set color and other style characteris-
tics. To utilize these functions you must include an
XmDrawingArea widget in your dialog window.

The DRAWDLG.SML script illustrates how to set up and
use a drawing area in a dialog window. When you
create the drawing area, you specify its height and
width in screen pixels along with the parent widget
and attachment settings. Placement of elements in
the drawing area is referenced to an X-Y coordinate
system with units of screen pixels and an origin (0,0
position) at the upper left corner of the drawing area.
When you use functions such as SetColor(),
SetLineWidth(), and DrawTextSetFont(), these set-
tings are used by subsequent drawing functions until
you call the relevant "Set" functions again to change
them. These parameters are stored in a structure
called a graphics context, which is created by the
function CreateGCForDrawingArea(). The GC must
also be activated by the ActivateGC() function be-
fore it can be used.

If your dialog window is covered by another win-
dow and then exposed again, regular Xm widgets
are redrawn automatically. If you use a drawing area,
however, your script must explicitly handle this
event. You must add an ExposeCallback to the call-
back list of your drawing area widget. This callback
is triggered automatically when the window is
opened or otherwise exposed. All of the drawing
instructions must be placed inside the callback pro-
cedure so that drawing is triggered by any expose
event. A graphics context requires an active win-
dow, so the GC must also be created and activated
within the callback.

The DRAWDLG.SML script uses
a drawing area widget to
draw (in order) a filled white
rectangle, a filled red circle,
an open yellow circle, and a
simple text string.

Filled
rectangle

[FillRect()]
Filled circle

[FillCircle()]

Circle [DrawCircle()]
Text (rotated)
[DrawTextSimple()]

Building Dialogs in SML

page 31

Creating a View in a Dialog Window
STEPS

select File / Open /
*.SML File and select
VIEW.SML from the SMLDLG

directory
run the script using as
input raster _8_BIT from
the CB_COMP Project File
in CB_DATA sample data
directory
select View / Close to
close the window

A dialog window created by an SML script can dis-
play input or output objects in a view. The
GroupCreateView() function is used to create the
view widget to display a geodata group within the
parent dialog. Other functions in the Geodata Dis-
play, Geodata Display Group, Geodata Display
Layout, and Geodata Display View function groups
allow you to set up a group to display, to add ob-
jects, and to access coordinate and scale information.

Sample script VIEW.SML shows the basic steps re-
quired to open a view window of a group and
display an input raster. Sample script BOXCAR2.SML

creates a more complex dialog window incorporat-
ing a number of other widgets in addition to the

view.

select File / Open /
*.SML File and select
BOXCAR2.SML from the
SMLDLG directory
run the script, selecting
for input rasters RED,
GREEN, and BLUE from the
CB_TM Project File in the
CB_DATA directory
press [Process] on the
Boxcar Classification
window to run using the
default values
study the script to see
how the various window
components are
constructed and how
actions are controlled

Sample script
BOXCAR2.SML

provides a more
complex
example of a
dialog window
incorporating a
view.

By default, a
view widget
includes the
standard
menus, basic
toolbar, scale /
position line,
and status line.

A createflag$ parameter of the GroupCreateView()
function allows you to eliminate selected window
elements if you wish. For example, the Boxcar view
does not have a Scale / Position line or status line.

Building Dialogs in SML

page 32

Advanced Software for Geospatial Analysis

MicroImages, Inc.
11th Floor - Sharp Tower
206 South 13th Street
Lincoln, Nebraska 68508-2010 USA

Voice: (402) 477-9554 email: info@microimages.com
FAX: (402) 477-9559 internet: www.microimages.com

MicroImages, Inc. publishes a complete line of professional software for advanced geospatial
data visualization, analysis, and publishing. Contact us or visit our web site for detailed prod-
uct information.

TNTmips TNTmips is a professional system for fully integrated GIS, image analysis, CAD,
TIN, desktop cartography, and geospatial database management.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector,
image, CAD, TIN, and relational database project materials in a wide variety of formats.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD-
ROM at low cost. TNTatlas CDs can be used on any popular computing platform.

TNTserver TNTserver lets you publish TNTatlases on the Internet or on your intranet.
Navigate through geodata atlases with your web browser and the TNTclient Java applet.

TNTlite TNTlite is a free version of TNTmips for students and professionals with small
projects. You can download TNTlite from MicroImages’ web site, or you can order
TNTlite on CD-ROM.

Index

S
M
L

D
I
A
L
O
G
S

book element..14
callback....................................22-29
colorbutton....................................13,14
combobox.....................................8,25,26
control settings..................................23
dialog element.................................5,6,7
drawing area.....................................30
editnumber........ .10,25
edittext..................................13,25,26
frame..29
groupbox...9
id attribute..6,7
item.. .8,9,11,12
label...............................5,8,10,28,29
layout component.................................9
listbox..8,11,26
menubutton..................................8,12
modal dialog......................................17
Motif .4
Popup dialog..3

page element......................................14
pane...10-12
Parse(xml$)... .16,17
pushbutton...............................5,11,12,28
radiogroup..9
Read(xmlfile$).............................16,17
root element..5
script element...24
togglebutton.................................7,12,26
view..31
widget..4,28,29
XML...4,5

attributes... .6
editors..................................20-21
elements...5
empty tag..7
errors..18-19
tags..............................5,7,22,24
valid.. .20-21
well-formed.................................6,18,20

Reference Guide to SML Dialog Specifications in XML
This document is a reference to the creation of custom SML dialog window specifications in XML format. A dialog
specification is a simple text file (or text character string embedded in the SML script) that conforms to the basic
format and syntax rules of the Extensible Markup Language (XML). The XML text consists of a set of predefined
XML tags and attributes (described in this document) in a nested, hierarchical structure that mirrors the grouping of
components in the dialog window. In comparison to the previously-available X-Motif class structures in SML for
custom dialogs, XML specifications provide a simpler, more highly-structured approach to constructing custom
SML dialogs, as well as streamlined methods for accessing information input via the dialog. Custom dialog
windows created using an XML specification can be used in either SML for X or SML for Windows. Dialogs
created using the X-Motif classes can be used only in SML for X.

About XML
XML is a markup meta-language that is designed to allow the creation of structured, self-describing text. XML
makes use of tags (enclosed between < and > characters) to delimit and identify pieces (elements) of text data. In
an SML dialog specification, the data elements identified by the tags correspond to specific components of a dialog
window, such as buttons and labels. Delimiting tags occur as a pair, a start tag and end tag, that enclose the relevant
text. The start and end tag use the same tag name, but in the end tag the name is preceded by the forward slash “/”
character. For example, here is the entry for a text label in an SML dialog specification in XML:

 <label>Select Composite Type:</label>

In this case the <label> tags bracket the text to be used for the label on the dialog.

Data elements in XML can be nested inside other data elements to indicate membership in a group. There may be
multiple levels of membership, forming a hierarchical or tree-like data model. This model is well suited to describe
a dialog window, because many dialog elements, such as panes, list boxes, and menu buttons, act as “containers”
that have other elements as their “contents”. (Another way of stating this is that the container element is the
“parent” and the contained elements are the “children”). In a dialog specification in XML the contained elements
are nested inside the tag pair for the container element. For example, the excerpt below shows the specification for a
layout pane that includes two text labels sandwiched around a numeric entry control:

 <pane Orientation="horizontal">
 <label>Buffer Distance:</label>
 <editnumber id="buffdist" Width="4" Precision="0" Default="100" MinVal="0"/>
 <label>meters</label>
 </pane>

For ease of editing and reading the dialog specification, the start and end tags for a parent element should be placed
on separate lines in the text, with the contained elements identified on the intervening lines. You should also indent
lines corresponding to child elements by an equal amount relative to their parent element tags.

Start tags can also include attributes. A specific, predefined set of attributes are available for each type of dialog
element in an SML dialog specification. You use these attributes to define the individual characteristics and settings
for each dialog element, to provide a control handle for the SML script to use to access the control, and to specify a
callback procedure associated with a control (if needed). To use an attribute within an element tag, you list the
attribute name and assign it a value (in double quotation marks) using an equals sign (=). In the specification
excerpt immediately above, the layout pane has an attribute called Orientation that has been assigned the value
horizontal. Attribute names and predefined nonnumeric values are case-sensitive.

Some dialog elements can be completely specified using the tag name and a list of start-tag attributes. There is no
other “text” associated with the element to be bracketed by separate start and end tags. In this case the two tags are
combined into a so-called empty tag. In an empty tag the forward slash character (/) normally used to begin an end
tag is placed just before the final character (>) of the tag. The editnumber tag in the specification excerpt
immediately above is an example of an empty tag.

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

In order for SML to correctly parse and interpret a document specification, the specification must follow some
simple syntax rules that define a well-formed XML document:
 1) An element containing text or other elements must have both start and end tags.
 2) An empty element tag must have a forward slash (/) before the ending bracket
 3) All attribute values must be in quotes.
 4) Elements may not overlap.

In general uses of XML, the meanings of tags and attributes are specified in a document type definition (DTD),
which can be either contained in the XML file or referenced by it, or alternatively in an external XML Schema.
However, the XML text describing an SML dialog does not need to reference a DTD or Schema, because the tag
and attribute meanings are processed by the SML parser.

To conform to XML standards, the dialog specification should begin with an XML Declaration containing the
version of XML:

 <?xml version="1.0"?>.

For further information about XML, please consult the following:

Learning XML, by Erik T. Ray. O’Reilly & Associates, Sebastopol, CA, 2001. 354 pages.

Mastering XML, by Ann Navarro, Chuck White, and Linda Burman. SYBEX, San Francisco, CA, 2000, 882 pages.

XML Handbook, by Charles F. Goldfarb and Paul Prescod. Prentice-Hall PTR, Upper Saddle River, NJ, 4th Ed.,
2002, 1147 pages.

www.w3.org/XML/: XML web site maintained by the World Wide Web Consortium (W3C), the organization that
formulates and publishes XML standards. Includes technical specifications and links to other web resources on
XML, including tutorials and books.

www.xml.org: Industry web portal on XML maintained by OASIS, the nonprofit Organization for the Advancement
of Structured Information Systems. Includes sections on XML basics.

xml.coverpages.org/xml.html: XML section of Cover Pages, maintained by Robin Cover and hosted by OASIS.

www.xml.com: XML site by O'Reilly & Associates.

2 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

http://www.w3.org/XML/
http://www.xml.org/
http://xml.coverpages.org/xml.html
http://www.xml.com/

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Overview of Tag Set and Classes for SML Dialog Specifications
A dialog created using an XML dialog specification makes use of a set of Graphical User Interface (GUI) classes in
SML. Most of the XML tag types in a dialog specification correspond to specific GUI classes. In essence, the XML
specification provides a shorthand way to set up and access the various class structures that underlie a custom dialog
window. The following is a list of the available dialog elements with their tag name and corresponding GUI class.
Each element type is documented fully in subsequent sections of this document.

Tag Description Class

Main Elements
<root> root element of the document None
<dialog> dialog window GUI_DLG
<script> container for an SML script None

Layout Elements
<book> book of tabbed pages GUI_LAYOUT_BOOK
<page> tabbed page in a book GUI_LAYOUT_PAGE
<pane> window layout pane GUI_LAYOUT_PANE
<groupbox> frame around other controls GUI_CTRL_GROUPBOX

Control Elements
<label> simple text label GUI_CTRL_LABEL
<pushbutton> push button with text or icon GUI_CTRL_PUSHBUTTON
<togglebutton> independent toggle button GUI_CTRL_TOGGLEBUTTON
<colorbutton> color selection button GUI_CTRL_COLORBUTTON
<edittext> text entry control GUI_CTRL_EDIT_STRING
<editnumber> numeric entry control GUI_CTRL_EDIT_NUMBER
<radiogroup> group of radio (mutually exclusive) buttons GUI_FORM_RADIOGROUP
<combobox> combobox menu GUI_CTRL_COMBOBOX
<menubutton> button with drop-down menu GUI_CTRL_MENUBUTTON
<listbox> scrolled list for selection GUI_CTRL_LISTBOX
<item> item in a list, menu, combobox, or radiogroup None

In addition to the classes listed above, two other SML classes provide methods to interact with dialog specifications
in XML:

class XMLDOC: an XML document. Methods in this class are used to read and parse the XML text.

class XMLNODE: an element (node) in an XML document. Methods in this class allow the script to access the
XML elements that correspond to particular components of the dialog.

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 3

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

Callbacks
All dialog elements that represent actual controls can have callback attributes. The attribute is named in such a way
as to indicate the type of action happening, like OnClicked, or OnValueChanged.

The value of a callback attribute is a small fragment of SML code, usually a call to a function or procedure defined
in the main SML script or in the dialog specification within a <script> element. If the value used for a callback
attribute is a call to a function or procedure, include the full procedure name (including parentheses) as the callback
value in the dialog specification, as for the OnOK attribute in the following example:

 <dialog id="tigerops" title="Extraction options" OnOK="CheckTogs()">

All callbacks can return a numeric value and return 1 by default. Some callbacks, like OnOK for dialogs can
prevent the default action by returning 0 instead. If the returned value is required for use in the main script, the
value for the callback should be a statement with the keyword "return" followed by the name of the associated user-
defined function, as in the following example:

 <dialog id="tigerops" title="Extraction options" OnOK="return CheckTogs()">

The SML code within a <script> element can consist of one or more callback procedures for individual dialog
controls, including the dialog's OK and Cancel buttons. In some cases the code within the <script> tag could carry
out most of the intended data processing. However, a separate SML script is required to read in the dialog
specification file and open the dialog window described in the specification.

Within the SML code in a <script> element, the following conditions apply:

 Global variables and functions defined in the main SML script are available within the <script> element
code.

 The default MDLGPARENT for the SMLCONTEXT is set to the LAYOUT_PANE containing the control
so that any dialogs popped up while within the callback will automatically appear over the dialog, not
somewhere else.

 The variable this is predefined to be the control causing the event. The variable corresponds to a class
variable of one of the classes derived from GUI_CTRL. The control will already reflect the changes made,
so if the event is a toggle button being toggled, this.GetValue() will return true if the button was
toggled on and false if it was toggled off. To use the variable, you need to do two things: (1) the value you
assign for the callback attribute should include this as a parameter of the procedure or function; (2) in the
definition of the procedure or function, declare this as an instance of the relevant GUI_CTRL class. The
excerpt below illustrates this structure for a listbox control whose OnChangeSelection callback calls a
procedure called SayHello().

<root>
 <dialog id="hello" Title="Bonjour!"
 ...
 <listbox id="listbox" SelectStyle="single" Height="3" Default="French"
 OnChangeSelection="SayHello(this)">
 ...
 <\dialog>
 <script>
 <![CDATA[
 proc SayHello (class GUI_CTRL_LISTBOX this) {
 local string $language;
 language$ = this.GetSelectedItemID();
 ...
 }
]]>
 </script>
</root>

4 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Example Dialog Specification in XML
This dialog specification describes a dialog window with three tabbed panels that include various types of controls.

<?xml version="1.0"?>
<root>
 <dialog id="test" title="This is a test" Orientation="vertical" OnOK="GetDlgValues()">
 <book>
 <page Name="Page1">
 <label>This is some text in a label</label>
 <pushbutton Name="Ignore This" OnPressed="TestFunc2();"/>
 <combobox id="combo">
 <item Value="item1">If it's not one thing</item>
 <item Value="item2">it's another</item>
 </combobox>
 <pane Orientation="horizontal">
 <pushbutton Name="Test" Icon="CHECKBOX_BLACK" ToolTip="Check This!"/>
 <togglebutton id="tbutton" Name="This is a togglebutton"/>
 </pane>
 </page>
 <page Name="Edit">
 <pane Orientation="horizontal">
 <label WidthGroup="1">First Name:</label>
 <edittext id="fname" width="20"/>
 </pane>
 <pane Orientation="horizontal">
 <label WidthGroup="1">Last Name:</label>
 <edittext id="lname" width="20"/>
 </pane>
 <pane Orientation="horizontal">
 <label WidthGroup="1">Password:</label>
 <edittext id="password" Opaque="true" width="20"/>
 </pane>
 </page>
 <page Name="Radiogroup">
 <groupbox Name="This is a groupbox">
 <radiogroup id="radiogroup">
 <item Value="button1" Name="If it's not one thing"/>
 <item Value="button2" Name="it's another"/>
 </radiogroup>
 </groupbox>
 </page>
 </book>
 </dialog>
 <script language="SML">
 <![CDATA[
 func TestFunc2() {
 PopupMessage("I said to ignore this!");
 return (0);
 }
]]>
 </script>
</root>

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 5

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

Common Dialog Element Attributes
This is a list of attributes that are common to many of the dialog elements. They are documented here to avoid
redundancy. In the succeeding documentation of individual elements, the attributes unique to that element are
documented in full, but the available common attributes are merely listed for each element.

id – All elements can have an id attribute. The value of an id attribute can be any string, but must be unique within

a given XML document. You are not allowed to have two tags with the same id. This is what allows you to
gain access to the elements within SML and is also the key used to set/retrieve the data for the form. You
don’t have to assign ids to elements that you don’t need to read or change, such as labels and icons.

Orientation – Either “horizontal” or “vertical”. The default is the opposite of the parent’s orientation or vertical
for the main form. All children of the form are laid out from left to right or top to bottom. To make more
complex layouts, nest <panes> with alternating orientations.

HorizAlign – Controls how the control is aligned horizontally in the available space. Possible values are “Left”
(the default), “Right” and “Center”.

VertAlign – Controls how the control is aligned vertically in the available space. Possible values are “Top” (the
default), “Bottom” and “Center”.

HorizResize – Controls how the control behaves when the parent is resized. Possible values are:
”Expand” – Expands horizontally to fill the available space.
”Fixed” – Width stays the same.
”Relative” – Expands horizontally, keeping the same percentage of space as it had before.

VertResize – Controls how the control behaves when the parent is resized. Possible values are:
”Expand” – Expands vertically to fill the available space.
”Fixed” – Width stays the same.
”Relative” – Expands vertically, keeping the same percentage of space as it had before.

ChildSpacing – Space between children. The default value is 4.

ExtraBorder – Extra border around inside of pane, in addition to ChildSpacing. The default value is 0.

WidthGroup – If specified, all controls with the same WidthGroup value will be adjusted to be as wide as the
widest control in the group.

ResourceLookup – Either “true” or “false”. If “false”, the string is used as-is. If “true” any string shown on the
dialog for the element (such as a label or dialog name) is translated through the X resource file
tntxres.txt. This means that the values for labels should be specified using the standard identifier for the
specific label string in the X resource file. (If the string you provide does not correspond to an identifier in
the resource file, the string is also used as-is.) You can use this setting to create an automatically-localized
custom dialog if the resource file has been translated into the appropriate language. The default is to inherit
the value from the parent, except for <form> and <dialog>, which default to “true”.

Enabled – Either “true” or “false”. If “true” (the default), the control is enabled. If “false”, it’s initially disabled
and grayed out. The control stays this way unless changed via SML script or C++ code.

NOTE. Any attribute that has “true” and “false” as valid values also accepts “yes” and “no” or “1” and “0”.

6 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Dialog (Form) Elements

Main Elements

<root>

Description: The required root element of the document. All elements described subsequently must be contained
within <root> or one of its children.

Valid inside: nothing

Valid children: <script>, <dialog>

Attributes: none

SML Class: none

<dialog>

Description: A dialog window.

A dialog can be modal or non-modal, but that is up to the SML code that opens the dialog, not the XML
specification. A modal dialog is one that takes control and won’t let the program do anything else until the dialog
closes. Modal dialogs are automatically provided with “OK” and “Cancel” buttons. If there is a HelpID attribute in
the XML specification of the dialog, it will also have a “Help” button. Non-modal dialogs permit program
operations and user interactions to continue while they’re open. In this case, the “OK” and “Cancel” buttons are
replaced with “Apply” and “Close”.

Valid inside: <root>

Valid children: Any layout element except <page>; any control element except <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,
ExtraBorder, ResourceLookup, Orientation

OnApply – SML Code to execute when user presses the “Apply” button.
OnOK – SML Code to execute when user presses the “OK” button. After your OnOK callback is called, the

dialog will be closed. You can prevent it from closing by having your callback return 0.
OnCancel – SML Code to execute when the user presses the “Cancel” button. After your OnCancel

callback is called, the dialog will be closed. You can prevent it from closing by having your
callback return 0.

OnOpen – SML Code to execute when the dialog opens.
OnClose – SML Code to execute when the dialog closes. After your OnClose callback is called, the

dialog will be closed. You can prevent it from closing by having your callback return 0.
Title – The title of the dialog.
HelpID – A key into tnthelp.txt. If set, the dialog gets a “help” button that opens a help window.

SML Class: GUI_DLG

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 7

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

<script>

Description: Container for an SML script. An SML script can be enclosed in an XML wrapper. If the file has a
.sml extension but an XML header, the SML parser will look for a script tag and run that. The rest of the XML
document will be parsed and accessible to the script.

Note that the contents of the script tag must start with <![CDATA[and end with]]>. Without this, you would
have to escape every ampersand (&), greater-than (>), less-than (<) and both single and double quotes.

Valid inside: <root>

Valid children: Only a CDATA containing SML code

Attributes:

id – Unique identifier for the script (not usually necessary)
language – TNTmips only recognizes “SML”, which is the default. Include this attribute to ensure that

other XML viewers don’t try to interpret the CDATA as some other language such as Javascript.
Usage – One of the following values specifying the type of script:

“standalone”
“style-point”, “style-line”, “style-poly”
“select-point”, “select-line”, “select-poly”
“geoformula”, “macroscript”, “toolscript”

StrictSyntax – either “true” or “false”. If “true” (the default) the parser enforces stricter syntax rules
(requires semicolons at the end of lines, predeclared variables, etc.).

SML Class: none

Layout Elements

<pane>

Description: A layout pane

Valid inside: <dialog>, <page>, <pane>, <groupbox>

Valid children: Any layout element except <page>; any control element except <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,
ExtraBorder, ResourceLookup

Orientation – Either “horizontal” or “vertical” (default is the opposite of the parent pane). All children
of the form will be laid out from left to right or top to bottom. For more complex layouts, nest
<pane>s with alternating orientations.

SML Class: GUI_LAYOUT_PANE

<page>

Description: A tabbed page in a <book>

Valid inside: <book>

Valid children: Any layout element except <page>; any control element except <item>

8 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Attributes:
 id, Orientation, ResourceLookup
 Name – the label on the page’s tab
 OnSetActive – SML code to execute when the page is activated

SML Class: GUI_LAYOUT_PAGE

<book>

Description: book of tabbed pages

Valid inside: <dialog>, <page>, <pane>, <groupbox>

Valid children: <page>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,
ExtraBorder, ResourceLookup

SML Class: GUI_LAYOUT_BOOK

<groupbox>

Description: A frame around other controls

Valid inside: <dialog>, <page>, <pane>, <groupbox>

Valid children: Any layout element except <page>; any control element except <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,
ExtraBorder, Orientation, ResourceLookup, Enabled

 Name – the label on the upper left edge of the box (optional)

SML Class: GUI_CTRL_GROUPBOX

Control Elements

<label>

Description: A simple text label

Valid inside: any layout element except <book>

Valid children: text

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, ResourceLookup,
WidthGroup, Enabled

TextAlign – How to align the text of the label. Possible options are:
 “LeftNoWrap” – Left justify without word wrapping
 “Left” – Left justify, MFC may word-wrap if too long, but X won’t

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 9

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

 “Center” – Center, MFC may word-wrap if too long, but X won’t
“Right” – Right justify, MFC may word-wrap if too long, but X won’t

SML Class: GUI_CTRL_LABEL

<pushbutton>

Description: A push button with either text or icon.

Valid inside: any layout element except <book>

Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Name – the text to be placed on the button.
Icon – Icon to display based on ICONID values. For example, to use ICONID_CREATE_FILE, use the

string “CREATE_FILE”.
ToolTip – tooltip text to display for the button (only if it has an icon)
OnPressed – SML code to execute to call when the button is pressed. See section on callbacks for

details.

SML Class: GUI_CTRL_PUSHBUTTON

<colorbutton>

Description: A color selection button.

The button has no text, but the body of the button will show the selected color. Pushing the button pops up a color
selection dialog.

Valid inside: any layout element except <book>

Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, Enabled
ReadOnly – Either “true” or “false”. If true, the button shows a color but the user cannot change it. The

default is “false”
AllowTransparent – Either “true” or “false”. If true, the color selection dialog will allow

transparency settings. The default is “false”.
OnChangeColor – SML code to execute to call when color is changed. See section on callbacks for

details.

SML Class: GUI_CTRL_COLORBUTTON

<togglebutton>

Description: A toggle button.

Valid inside: any layout element except <book>

10 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Name – the label to be placed next to the button
Icon – Icon to display. Based on ICONID values. For example, to use ICONID_CREATE_FILE, use

the string “CREATE_FILE”. You can get a full list of valid Icon IDs by looking at the
documentation for the GUI_CTRL_TOGGLEBUTTON class in SML.

ToolTip – tooltip text to display for the button (only if it has an icon)
Type – “check” or “radio”. Radio buttons are round. A check box is square. The default is “check”. Note

that radio behavior is not automatic. If you want automatic radio behavior, create a
<radiogroup> with an <item> for each radio button.

Selected – Either “true” or “false”. If true, the button is initially selected. This can be overridden
through commands in the SML script.

OnChanged – SML code to execute when the button’s state changes (when the user toggles the button
on or off). For radio buttons, an OnChanged callback is also triggered for the button that is being
toggled off. See section on callbacks for details.

Note: to create mutually exclusive radio buttons, create a <radiogroup> with <item>s instead of
<togglebutton>s

SML Class: GUI_CTRL_TOGGLEBUTTON

<edittext>

Description: A text entry control.

The control has no built-in text label.

Valid inside: any layout element except <book>

Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

OnChanged – SML code to execute when the value is edited.
Width – Width of the text control in “typical” characters.
MaxLength – Maximum length of text to allow.
Justify – Text alignment. Either “left” or “right”. The default is “left”.
OnActivate – SML code to execute when the user presses <Enter> with the cursor in the edit control.
ReadOnly – Either “true” or “false”. If “true”, the user cannot change the value, but the control does not

look disabled. The default is “false”.
Opaque – Either “true” or “false”. If “true”, the control shows “*” for password input. Default is “false”.

SML Class: GUI_CTRL_EDIT_STRING

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 11

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

<editnumber>

Description: A numeric entry control.

The control has no built-in text label.

Valid inside: any layout element except <book>

Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

OnChanged – SML code to execute when the value is edited.
Width – Width of the text control in “typical” characters.
MaxLength – Maximum length of text to allow.
Justify – Text justification. Either “left” or “right”. The default is “right”.
OnActivate – SML code to execute when the user presses <Enter> in the edit control.
ReadOnly – Either “true” or “false”. If “true”, the user cannot change the value, but the control does not

look disabled. The default is “false”
Default – The default value (optional)
MinVal – Minimum allowed value. Default is no minimum.
MaxVal – Maximum allowed value. Default is no maximum.
AddOne – Either “true” or “false”. If “true”, the value shown in the control is always one more than the

actual data value. Default is “false”.
BlankZero – Either “true” or “false”. If “true”, blank the field if the value is 0.0. The default is “false”.

Note, the IEEE NaN value will always cause the control to show blank.
Format – One of the following:
 “Decimal” – Normal decimal format (default)

“Exponential” – Show in scientific notation.
 “Latitude” – A latitude value. Actual prompt value is decimal degrees.
 “Longitude” – A longitude value. Actual prompt value is decimal degrees.
 “DegMinSec” – An angle in Degrees, Minutes and Seconds. Actual prompt value is decimal

degrees.
Precision – Number of digits after the decimal place (Default is 6)

SML Class: GUI_CTRL_EDIT_NUMBER

<item>

Description: An item in a listbox, combobox, menubutton, or radio group.

Valid inside: <combobox>, <listbox>, <menubutton>, <radiogroup>

Valid children: text

Attributes:

ResourceLookup
Name – The button label for a radiogroup button or the item's menu entry for the other parent controls.
Value – The value of this item. This is the value that is returned when calling GetValue() on the parent

object if this item is selected. If omitted, the default value is the item’s index, starting at 1.

12 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Selected – Either “true” or “false”. If true, the item is selected by default. This overrides the
Default attribute of the parent. Default is false. If more than one item is marked as selected,
the last one marked is the one selected unless the parent is a multi-select list.

Icon – An icon ID (only valid if the <item> is inside a <radiogroup>).

SML Class: none

<radiogroup>

Description: A group of radio buttons (mutually exclusive).

Valid inside: any layout element except <book>

Valid children: <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
Orientation, ResourceLookup, Enabled

Default – The Value of the button that is to be on by default. This can be overridden by setting the
Selected attribute of one of the items in the group

OnSelection – SML code to execute when the selected button changes.

SML Class: GUI_FORM_RADIOGROUP

<combobox>

Description: A combo-box.

Valid inside: any layout element except <book>

Valid children: <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Default – The Value of the item that is to be selected by default. This can be overridden by setting
the Selected attribute of one of the items in the combobox.

OnSelection – SML code to execute when the selected item changes.
Width – Width of the control in “typical” characters. The default is to base the width on the width of the

widest item in the list.
Height – The maximum number of items to show when the list is opened. Default is 7. If there are more

items than that, the list has a scrollbar.
Sort – Either “true” or “false”. If “true”, then the values are sorted. The default is false.

SML Class: GUI_CTRL_COMBOBOX

<listbox>

Description: A simple scrolled list from which the user can view and select items.

Valid inside: any layout element except <book>

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 13

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

Valid children: <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Default – The Value of the item that is to be selected by default. This can be overridden by setting
the Selected attribute of one of the items in the combobox.

OnChangeSelection – SML code to execute when the selected item changes.
Width – Width of the control in “typical” characters. The default is to base the width on the width of the

widest item in the list.
Height – Height of the list in lines (default is 5).
Sort – Either “true” or “false”. If “true”, then the values are sorted. The default is false.
SelectStyle – One of the following:

“single” – (the default) allows one item to be selected.
 “multi” – Multiple items selectable by simple toggle of each item
 “extended” – Multiple items selected by SHIFT/CTRL key and mouse

SML Class: GUI_CTRL_LISTBOX

<menubutton>

Description: A pushbutton (text or icon) with a drop-down menu.

Valid inside: any layout element except <book>

Valid children: <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Name – the text to be placed on the button
Icon – Icon to display. Based on ICONID values. For example, to use ICONID_CREATE_FILE, use

the string “CREATE_FILE”. You can get a full list of valid Icon IDs by looking at the
documentation for the GUI_CTRL_TOGGLEBUTTON class in SML.

ToolTip – tooltip text to display for the button (only if it has an icon)
OnSelection – SML code to execute when a menu item is selected.
OnMenuPopup – SML code to execute just before the menu is shown.

SML Class: GUI_CTRL_MENUBUTTON

14 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Using an XML Dialog Specification with an SML Script
To use a dialog specification in XML in conjunction with an SML script, the script must first declare an instance of
the class XMLDOC. Methods within this class are then used to ingest and parse the XML text, creating the
necessary structures in memory for use throughout the remainder of the SML script.

The XML dialog specification used with a particular SML script can be either embedded in the script or in a
separate file. Different methods in class XMLDOC are used to ingest the XML text in these two cases. If you want
to incorporate the dialog specification directly within the SML script, you assign the XML-formatted text containing
the specification to a string variable. In most cases this specification will span multiple lines of text. You can
include multiple text lines in an assignment statement by enclosing the text in single quotation marks, as in the
following example:

xml$ = '<?xml version="1.0"?>
<root>
 <dialog id="hello" title="Hello, world!" ResourceLookup="false">
 <pane>
 <label WidthGroup="A" HorizAlign="Center">Sample Dialog Window</label>
 <groupbox Name="Language" ExtraBorder="2">
 <combobox id="combobox" HorizAlign="Center" Width="20">
 <item Value="English" Name="English"/>
 <item Value="French" Name="French"/>
 <item Value="German" Name="German"/>
 <item Value="Spanish" Name="Spanish"/>
 </combobox>
 </groupbox>
 <pushbutton Name="Print to Console" WidthGroup="A" OnPressed="Proc1()"/>
 </pane>
 </dialog>
</root>
';

class XMLDOC doc;
doc.Parse(xml$);

As the above example shows, when the XML text has been assigned to a text string, the XMLDOC class method
Parse(xml$) is used to parse the XML text.

If you prefer to compose the XML text in an external editor and keep it as a separate .xml file, you use the
XMLDOC class method Read(filename$) to read the external file and automatically parse its contents. The
filename passed to this method must include the full directory path to the file as well as its filename and extension.
If you keep the SML script and XML file in the same directory, you can simplify the task of specifying the path (and
make the script more readily portable) by using the CONTEXT class structure. When a script is run, an instance of
this class called _context is created automatically. The class member _context.ScriptDir finds the path to
the directory the script is in, and can be used as a substitute for this path in string expressions, as in the following
example that refers to a dialog specification file “text.xml” in the same directory as the SML script. A string
expression is used to concatenate the script’s directory path with the name of the target file:

class XMLDOC doc;
xmlfile$ = _context.ScriptDir + "/test.xml";
doc.Read(xmlfile$);

Both the Parse(xml$) and Read(xmlfile$) class methods also check the XML syntax of the dialog
specification and return an error code (a negative integer) if syntax errors are found. You can write the script to
check the returned value and pop up an error message dialog if needed, as shown below:

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 15

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

numeric err;
class XMLDOC doc;
xmlfile$ = _context.ScriptDir + "/test.xml";

err = doc.Read(xmlfile$);

if (err < 0) {
 PopupError(err);
 Exit();
 }

Pressing the Details... button on the error message dialog opens another window listing the syntax errors. Note that
a single error (such as missing closing quotes on an attribute value or a missing end tag) may trigger a number of
listings in this window.

16 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

Opening the Dialog
Opening the dialog specified by the XML text requires several steps:

1) Use the XMLDOC class method GetElementByID() to get the dialog element from the parsed XML and assign
it to an instance of class XMLNODE, the class used to represent elements in a parsed XML structure.

2) Set that XMLNODE instance as the source for an instance of class GUI_DLG, the SML class that actually
represents the dialog window.

3) Use a GUI_DLG class method to open the dialog window as either a modal or nonmodal dialog. A modal dialog
takes control and won’t let the SML program do anything else until the dialog closes. Modal dialogs are
automatically provided with “OK” and “Cancel” buttons. Nonmodal dialogs allow other program operations and
user interactions to continue while they are open. They are automatically provided with “Apply” and “Close”
buttons.

The script excerpt below carries out these steps for a modal dialog:

class XMLNODE dlgnode;
dlgnode = doc.GetElementByID("hello"); # “hello” is the value assigned to the id attribute
 # for the dialog element in the XML text
if (dlgnode == 0) { # pop up an error message if dialog node can’t be found
 PopupMessage("Could not find dialog node in XML document");
 Exit();
}

class GUI_DLG dlg;
dlg.SetXMLNode(dlgnode); # set this XML node as the source for the dialog window
numeric ret;
ret = dlg.DoModal(); #open the window as a modal dialog

When the DoModal() class method is called in the script, the method remains active until the user closes the modal
dialog. The method then returns the value -1 if the user pressed the Cancel button, or 0 if the user pressed the OK
button. The script can assign the returned value to a numeric variable (the variable ret in the above example), then
check this value to determine succeeding actions. This strategy provides an easier alternative to writing explicit
OnCancel() and OnOK() callback procedures.

To create and open the dialog as a nonmodal dialog, you would use the GUI_DLG class methods
CreateModeless() and Open().

Reading Dialog Control Values
Once the dialog has been opened and the user has set its controls, the script needs to get the control settings to
continue with further processing. Each control in a dialog has a “value” that is either a number or a string. For
editnumber and edittext controls, the value is simply the number or string (respectively) entered by the user.
For a togglebutton, the value can be retrieved as either a number or a string; it is 1 or "yes" if set and 0 or "no" if
not set. For controls that involve selection of an item (combobox, listbox, menubutton, and radiogroup), the
value of the control is the value of the selected item. The value of each item is set by the Value attribute you
assigned to that item in the dialog specification. You can use any character string for the item attribute, but
obviously each item in a particular control should have a unique value. If you use only numerals in the attribute
string, you can read the value as either a number or a string. If you omit Value attributes for the items, the default
value is the numeric index (position) in the list, beginning with 1.

For modal dialogs, dialog settings should be retrieved before the dialog closes and the controls are destroyed.
Settings can be retrieved within callback procedures for individual controls or within the OnOK callback procedure

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 17

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

for the dialog window. There are several methods that can be used to get control settings. The simplest and most
direct way to get the control settings is to use the GUI_DLG class method GetValues() to read the values of all of
the controls at once. These values are returned as an instance of the class GUIFORMDATA. You can then use
GUIFORMDATA class methods GetValueNum(ctrl_id$) or GetValueStr(ctrl_id$), where ctrl_id$ is
the id attribute you assigned for the control, to read each control value out of this structure as needed.

An alternate method is to use the GUI_DLG class methods GetCtrlValueNum(ctrl_id$) and
GetCtrlValueStr(ctrl_id$) to retrieve the value of any control individually from the dialog. This method is
less efficient than the previous one if you need to retrieve values for several controls. Internally each of these
functions calls the GetValues() class method to read all the control values, but returns only the requested value
and discards the rest.

A third method uses the GetCtrlByID() class method in GUI_DLG to get the control handle for a dialog control,
then a GetValueNum() or GetValueStr() method in the individual GUI_CTRL_... class to read the value.

Setting Dialog Control Values
For most dialog windows, you can set the default condition for each control (such as default value for an
editnumber field, default state for a togglebutton, and default selection for a combobox) in the dialog
specification in XML using the attribute provided for each control. However, you can also use statements in the
main SML script (or in callbacks for other controls in the dialog) to set a control. For example, in a dialog that
requires the selection of several input objects, you might want the dialog to show the name of the object after each
has been selected. You can use an edittext control (set to be read-only) next to the selection button for this
purpose. The callback for the selection button can construct a text string from the file name and object name of the
selected object and set this as the value for the edittext control. Class methods in the GUI_DLG class
(SetCtrlValueNum(ctrl_id$) and SetCtrlValueStr(ctrl_id$)) provide the simplest means to set control
values. There are also methods in the GUI_CTRL_... class for the individual control type that can be used to set the
control value or to set which item is selected by default in a group control.

Sample Script: Read and Set Control Values
The sample script below (xmldlg.sml) opens the dialog created by the specification on page 5 of this document
(from a file named test.xml). After the user sets the controls on the dialog and presses the OK button, the script
reads the values from the dialog using each of the methods outlined above and prints the values to the SML Console
Window. It also sets default values for several of the controls before the dialog is opened. You can download the
script and dialog specification from www.microimages.com/freestuf/xmlscripts.htm.

numeric err, ret; # variable declarations
string xmlfile$;
class GUI_DLG dlg;

func TestFunc() { # define test callback function
 PopupMessage("I Said Ignore it!");
 }

proc GetDlgValues() {

 # Here are four ways to get settings out of the dialog. The extracted values are printed
 # to the console window as an example.

 # 1 -- Use the GetValues() class method in GUI_DLG to get all of the control settings at
 # at once. They are returned to a previously-declared instance of class GUI_FORMDATA.
 # Use GetValue...() methods in that class to read the values as needed.
 printf("Method 1...\n");
 class GUI_FORMDATA data;

18 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

www.microimages.com/freestuf/xmlscripts.htm

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

 data = dlg.GetValues();
 printf(" RadioGroup value = %s\n", data.GetValueStr("radiogroup"));
 printf(" FirstName: %s\n", data.GetValueStr("fname"));
 printf(" Togglebutton numeric value = %d\n", data.GetValueNum("tbutton"));
 printf(" Togglebutton string value = %s\n\n", data.GetValueStr("tbutton"));

 # 2 -- Use GetCtrlValueNum() and GetCtrlValueStr() class methods in GUI_DLG to ask the
 # dialog for each control value individually as needed. No GUI_FORMDATA class
 # instance is required. Less efficient than #1 if multiple control values are
 # needed. Internally it calls dlg.GetValues(), pulls out the one value asked for,
 # and discards the rest.
 printf("Method2...\n");
 printf(" RadioGroup value = %s\n", dlg.GetCtrlValueStr("radiogroup"));
 printf(" FirstName: %s\n", dlg.GetCtrlValueStr("fname"));
 printf(" Togglebutton numeric value = %d\n", dlg.GetCtrlValueNum("tbutton"));
 printf(" Togglebutton string value = %s\n\n", dlg.GetCtrlValueStr("tbutton"));

 # 3 -- Use the GetCtrlByID() method in GUI_DLG to get the control handle for a control class,
 # then a GetValue...() method in the individual GUI_CTRL_... class to read the control
 # value individually as needed.
 printf("Method3...\n");
 class GUI_CTRL_EDIT_STRING fname;
 class GUI_FORM_RADIOGROUP radio;
 class GUI_CTRL_TOGGLEBUTTON tbutton;
 fname = dlg.GetCtrlByID("fname");
 radio = dlg.GetCtrlByID("radiogroup");
 tbutton = dlg.GetCtrlByID("tbutton");
 printf(" RadioGroup value = %s\n", radio.GetSelected());
 printf(" FirstName: %s\n", fname.GetValue());
 printf(" Togglebutton numeric value = %d\n", tbutton.GetValueNum());
 printf(" Togglebutton string value = %s\n\n", tbutton.GetValueStr());

 # 4 -- A more compact (but perhaps less clear) version of method 3. Methods to get the control
 # handle and its value are strung together, eliminating the need to declare the control handle
 # class variable.
 printf("Method 4...\n");
 printf(" RadioGroup value = %s\n", dlg.GetCtrlByID("radiogroup").GetValueStr());
 printf(" FirstName: %s\n", dlg.GetCtrlByID("fname").GetValueStr());
 printf(" Togglebutton numeric value = %d\n",
 dlg.GetCtrlByID("tbutton").GetValueNum());
 printf(" Togglebutton string value = %s\n\n",
 dlg.GetCtrlByID("tbutton").GetValueStr());

 # NOTE: if the control value must be accessed in several places, store it as a variable for
 # reuse. Values read from GUIFORMDATA or the dialog would be stored as numeric or string
 # variables.

 } # end GetDlgValues()

Main script #####

clear(); # clear the console window

class XMLDOC doc;
xmlfile$ = _context.ScriptDir + "/test.xml";
err = doc.Read(xmlfile$); # read and parse the dialog specification

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 19

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

if (err < 0) {
 PopupError(err); # Popup an error dialog. "Details" button will say what's wrong.
 Exit();
 }

class XMLNODE dlgnode;dlgnode = doc.GetElementByID("test"); # get the dialog element from the
 # parsed XML
if (dlgnode == 0) {
 PopupMessage("Could not find dialog node in XML document");
 Exit();
 }

dlg.SetXMLNode(dlgnode); # set the XML dialog element as the source for dialog class
dlg.SetCtrlValueStr("fname", "Fred"); # set value for edittext control "fname"
dlg.SetCtrlValueStr("radiogroup", "button2"); # set value for radiogroup control

ret = dlg.DoModal(); # open as modal dialog
Note: ret will be -1 if user hit cancel, 0 for OK

printf("DoModal() returned %d\n", ret);

Dynamic Customization of Dialogs
In a script that launches a complex processing sequence, it may not be possible to bring all the required controls
together into one dialog window. In such cases, a push button on the main dialog window can be set up to open an
auxiliary dialog window that is also specified in XML. One example is provided by the sample script devegX.sml.
This script is designed to process a multispectral image to suppress the expression of vegetation. The script and a
color plate describing it are available from www.microimages.com/freestuf/xmlscripts.htm.

The illustration above left shows the main dialog window created by the devegetation script. A numeric Dark Pixel
value is required for each multispectral image band to be processed. To enter these values, the user presses the Set
dark pixel values... pushbutton on the main dialog window; the callback procedure for this button creates and opens
the auxiliary Set Dark Pixel Values window (above right). This window shows a list of the bands to be processed;

20 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

http://www.microimages.com/freestuf/xmlscripts.htm

TNT Products 6.8, 12 June 2003 Reference Guide to SML Dialog Specification in XML

each entry consists of a label element (with the file name and object name) and an editnumber control, both of
which are contained in a layout pane with horizontal orientation.

Note that the file and object names required for the Set Dark Pixel Values dialog are not known in advance, and
even the number of bands to be processed is not fixed. Therefore only a skeletal representation of this dialog can be
provided by the embedded XML specification in the callback. This static specification sets up the dialog itself, the
label at the top, the groupbox, and a blank layout pane within the groupbox. After the static specification is
parsed into memory, the remaining elements of the dialog specification must be added dynamically to the XML
structure in memory, using information from the input objects the user has selected, before the dialog is opened.

Methods in the class XMLNODE are used to modify the XML dialog structure in memory. You can add a new
"child" element to any existing element and set their attribute values. Any element of the static XML specification
that needs to be modified later should have an id attribute so the element can be accessed. In this case the blank
layout pane inside the groupbox is assigned the id "dplist". To add each entry in the required list, a horizontal
pane is added as a child element to dplist. The new pane for the current entry then is used as the parent for a child
label element and a child editnumber element, with attribute values derived from the corresponding input object.

The script excerpt below shows the first portion of the callback procedure, which includes the static XML
specification for the Set Dark Pixel Values dialog and the code that adds the first band entry to the window. The
other band entries are handled in a similar manner.

proc SetDP () {

 ### Create string variable with XML specification of dialog
 ### to enter dark-pixel-correction values
 xmldp$ = '<?xml version="1.0"?>
 <root>
 <dialog id = "dpdlg" title = "Set Dark Pixel Values" OnOK = "dpOK()" >
 <label>Set Dark Pixel (Path Radiance)</label>
 <label>Correction Values:</label>
 <groupbox ExtraBorder = "3">
 <pane id = "dplist" Orientation = "Vertical"/>
 </groupbox>
 </dialog>
 </root>';

 ### Parse XML text for dialog into memory; return error if there are syntax errors.
 err = docdp.Parse(xmldp$);

 if (err < 0) {
 PopupError(err);# pop up an error dialog
 Exit();
 }

 #############################
 ### Modify the XML structure in
 ### memory before opening the dialog
 ##############################

 ### Get the id for the parent pane that will contain the list of bands and the
 ### numeric fields for the correction values
 class XMLNODE dplist;
 dplist = docdp.GetElementByID("dplist");

 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com 21

Reference Guide to SML Dialog Specification in XML TNT Products 6.8, 12 June 2003

22 © 2003 MicroImages, Inc. 206 South 13th Street, Lincoln, Nebraska 68508-2010 www.microimages.com

 ########################
 ### Add horizontal pane for the first row of dialog elements
 ### (label and numeric field for NIR band)
 ########################
 class XMLNODE paneNIR;
 paneNIR = dplist.NewChild("pane");
 paneNIR.SetAttribute("Orientation", "Horizontal");

 # Add label with name of NIR band to the NIR pane
 class XMLNODE labelNIR;
 labelNIR = paneNIR.NewChild("label");
 nirprtext$ = sprintf("%s.%s \\ %s", FileNameGetName(nirfile$),
 FileNameGetExt(nirfile$), nirobjname$);
 labelNIR.SetText(nirprtext$);

 # Add editnumber field to the NIR pane and set its attributes
 class XMLNODE prEditNIR;
 prEditNIR = paneNIR.NewChild("editnumber");
 prEditNIR.SetAttribute("id", "prEditNIR");
 prEditNIR.SetAttribute("Width", "5");
 prEditNIR.SetAttribute("MinVal", "0");
 prEditNIR.SetAttribute("MaxVal", "255");
 prEditNIR.SetAttribute("Default", NumToStr(nirmin));
 prEditNIR.SetAttribute("Precision", "0");

 [...code for additional list entries...]

} # end of SetDP()

	Before Getting Started
	Welcome to Building Dialogs in SML
	Two Types of SML Dialogs
	Dialog Specifications in XML
	A Simple Dialog Specification in XML
	Using Attributes for Tags
	Togglebuttons and Empty Tags
	Combobox and Items
	Radiogroup and Groupbox
	Numeric Fields and Layout Panes
	Pushbuttons and Listbox
	Menubuttons
	Edittext and Colorbutton
	Using Tabbed Pages
	Specification for Flowpath Dialog
	Using an XML Dialog Specification
	Creating and Opening the Dialog Window
	Trapping XML Errors
	Trapping Dialog ID Errors
	Using an XML Editor
	An Example of a Validating XML Editor
	Using Callbacks
	Getting Values from the Dialog
	Using the Script Tag
	Changing Control Settings in Callbacks
	Managing a Complex Dialog Window

	Dynamically Adding Dialog Components

	Dialogs Using Widget Classes
	A Simple Dialog Using Widget Classes
	A Dialog Using Varied Widget Classes
	Creating and Using a Drawing Area
	Creating a View in a Dialog Window

	Index and MicroImages Product Information
	Reference Guide to SML Dialog Specifications in XML
	About XML
	Overview of Tag Set and Classes for SML Dialog Specifications
	Callbacks
	Example Dialog Specification in XML
	Common Dialog Element Attributes
	Dialog (Form) Elements
	Main Elements
	Layout Elements
	Control Elements

	Using an XML Dialog Specification with an SML Script
	Opening the Dialog
	Reading Dialog Control Values
	Setting Dialog Control Values
	Sample Script: Read and Set Control Values
	Dynamic Customization of Dialogs

