車載およびUAV搭載用Lバンドリピートパス干渉 SARシステムを使った地表変位のモバイルマッピング

Othmar Frey Gamma Remote Sensing /Earth Observation & Remote Sensing, ETH Zurich, Switzerland Charles L. Werner Gamma Remote Sensing Switzerland Roberto Coscione Earth Observation & Remote Sensing, ETH Zurich Switzerland

概要:本稿では、車載およびUAV搭載用のLバンドFM-CW 方式のリピートパス干渉SARシステムを使用した地表変位の モバイルマッピングに関する初めての測定結果について報告 します。適用例としては、(1)カーブした道路に沿ってスイス・ アルプスのスタイン氷河の氷河流による変位を観測した(車 載モード)。(2)Aeroscout社が飛ばした垂直離着陸(VTOL) UAVのScout B1-100機を用いて谷の傾斜を繰り返し観測し た。数値標高モデルや高精度なGNSS/INSナビゲーションデー タを使い、時間領域逆投影(TDBP)法を使用することによっ て、SAR Rawデータを地図座標の画像グリッドに直接結像し ました。これらのジオコード済み複素SAR画像から地図座標 の差分干渉画像を直接作成しています。自動車やUAVなどの モバイルプラットフォームにFM-CW方式のLバンドSARを搭載 したリピートパス干渉法の可能性が複数のデータ例で成功裏 に実証されました。

キーワード: 合成開口レーダ(SAR)、SAR干渉、モバイルマ ッピング、車載SAR、UAV、航空機搭載SAR、地上レーダ干渉 計、リピートパス干渉法、SARイメージング、結像(フォーカシ ング)、逆投影、GPU、CUDA、干渉法、Lバンド、INS、GNSS

I.序論

現在の固定式地上レーダシステムは、クロスレンジ解像度 を確保するために比較的高い周波数(大部分がKuバンドまた はXバンドで作動)(参考文献[1]-[3])を使用していますが、Lバ ンドSARシステムは、車載モードやUAV搭載モードで運用す る場合、0.5 mから数メートル程度のクロスレンジ方向の高解 像度が得られます。クロスレンジ方向の解像度は、画像全体 に対して到達可能なレンジによって可変な最大合成開口長に 表1 GAMMA-LバンドSARの仕様

周波数範囲	1.2~1.4 GHz
使用中心周波数	1.325 GHz
中心周波数での波長	22.6 cm
チャープ帯域	50~200 MHz
使用带域	100 MHz
レンジ分解能(@100 MHz BW)	1.5 m
アジマス分解能(@full SA) ≤0.5 m	
アジマス分解能(@SA=250m, R=5kr	n) 2.3 m
方式	FM-CW
チャープ長	250 μ s \sim 8 ms
送信電力	最大10W(使用時:5W)
送信用チャネル	2 (交互)
受信用チャネル	4 (同時)
上下方向のビーム幅(3dB)	40.0度
アジマス方向のビーム幅(3dB)	40.0度
上下方向のポインティング角	可変(構成による)
レーダハードウェア構成部品	Pelicase 1450ケース
寸法(長さ×幅×高さ)	406×330×174 mm
重量	7.65 kg

依存することが多いですが、全開口長もまた道路による移動 範囲の制約(車載モードの場合)や可能な飛行経路(航空機搭 載/UAV)、地形などに依存します。

高周波固定システムの重要な利点および相補的とも言える 性質は、Lバンドでの時間的非相関性の減少です。変動に対 する感度は低くなりますが、Lバンドの長い波長は、Kuバンド での非相関時間が数分以下の自然地形において長時間の干 渉時系列が得られます。

本稿では、新型のLバンドリピートパス干渉SARシステムを 使用して、地表変位の視線方向の成分を観測対象として、車 載およびUAV搭載型モバイルマッピングの実証試験を行い ました。観測例としては、(1) 2018年秋、スイス・アルプスに あるスタイン氷河で、わずかにカーブした道路に沿って車載 モードで観測した氷河流変位、(2) 2019年2月~3月に、スイ ス・ヴォルフェンシーエッセンにおいて、Aeroscout社のVTOL UAV Scout B1-100機に搭載した同一のSARシステムを用いて UAV搭載モードで繰り返し観測された谷の傾斜について紹介 します。

図1. (a)と(b): 送信用アンテナ1台と受信用アンテナ3台を備えたコンパクトなFM-CW方式のLバンドSARシステムを車両に設置した様子。2018 年、スタイン氷河での実証試験に用いられた(受信用アンテナはうち1台のみ使用)。(c) 交互送信用チャネル2個、同時受信用チャネル4個を備 えたLバンドレーダのコネクタ盤。(d)と(e): 2019年冬、スイス中央部・ヴォルフェンシーエッセンにおいて、Aeroscout社VTOL UAV Scout B1-100機搭載LバンドSARの離陸時の様子(d)と干渉リピートパスSARデータ取得中の様子(e)。

図2. (a)スイス・スタイン氷河の試験場所のGoogle Earthビュー。 (b)車載LバンドSARから得られたジオコード済み強度画像を Google Earthにオーバーレイしたもの。2msのチャープ時間。 TDBPによってDEMに基づき再構築した地図座標グリッドに結像 した。

II.Lバンドレーダハードウェア、観測計の設置、 SARイメージング

表1に、LバンドFM-CW SARシステムの仕様について概要 を示します。Lバンドレーダには、同時に作動可能な4つの低 ノイズレシーバチャネルがあります。カスタム設計のFPGA 14 ビット/チャネルデジタイザ(AD変換器)は、4つのチャネルす

図3. (a) スイス・ヴォルフェンシーエッセンにあるUAV試験場所の Google Earthビュー。(b) UAV搭載LバンドSARから得られたジオコー ド済み強度画像をGoogle Earthにオーバーレイした。2msのチャープ 時間。TDBPによってDEMに基づき再構築した地図座標グリッドに結 像した。

べてを同時に記録し、これらのデータをSSDにストリーミング します。レーダ装置は、Linuxベースのコンピュータによって 制御されています。送信器の最大出力は10W(実験では5W使 用)で、完全な偏波解析データの取得ができるトランスミッタ ー出力スイッチを含んでいます。UAV/航空機搭載や車載によ るモバイルマッピングおよびレールベースによる地上での運

リピートパス差分干渉位相(rad)

図4.スタイン氷河と周辺領域の地図座標での差分干渉画像。岩体表面に固定した参照領域を赤い星印で示しています。時間基線長はそれ ぞれ30分(左上)、2時間15分(中央上)、2時間32分(右上)、4時間40分(左下)、6時間15分(中央下)、17時間(右下)。17時間の干渉画像は、1msの チャープ時間で取得した2つのデータ間で得られました。そのため、約4.68 kmの距離範囲の制限があります。他の干渉画像は、2msのチャー プ時間で取得しています。搬送周波数が1.325 GHz(波長22.6 cm)の場合、2πの干渉位相値は11.3 cmの視線方向の変位に換算されます。

用を目的として、コンパクトなレーダハードウェアの実装が行われました。

車両用には、ナビゲーション用に高精度のiMAR iNAV-RQH リングレーザージャイロINS/GNSSナビゲーションシステムを 使用しました。図1の(a)と(b)では、車載用の観測計設置の 様子が示されています。アルミニウム製ラックに送信用1台、 受信用3台のパッチアンテナが側方を向いた形で取り付け られています。図1の下段には、スイス中央部にてAeroscout 社UAV Scout B1-100機搭載のLバンドSAR(送信用アンテナ 1台、受信用アンテナ1台)の離陸時の様子(d)と干渉リピート パスSARデータ取得中の様子(e)が示されています。UAVには Honeywell社HGUIDE n580 INS/GNSSシステムを搭載してい ます。いずれの場合でも、GNSSデータは現地に臨時に設置さ れたローカルGNSS観測基準点に対して後処理キネマティッ クモードで処理され、その後疎結合されたGNSS/INSへの統 合が行われました。

車載またはUAV搭載により得られたSARデータは、FM-CWシステム(参考文献[4,7-9])用に適合した時間領域逆投影 (TDBP)法(参考文献[5,6])(CUDA/ANSIC言語で実装)を使用す ることによって、(約200~250mの)合成開口に沿って結像さ れ、直接地図座標の複素SAR画像が生成されます。この手法 では直接地図座標での差分干渉画像を計算しています。高 精度のINS/GNSSシステムを使用してSARシステムの位置決め と姿勢決定が行なわれたため、(軌道がわずかにずれて繰り 返されることにより)アジマス方向に基線が変動することが 知られています。また、地形により生じる位相はTDBPに基づ く結像手続きにより大部分が除去されます。

Ⅲ.結果

図2と3は、2ヶ所の試験場所の全体図を示しています。また、車載モードとUAV搭載モードで得られたジオコード済み LバンドSAR強度画像も示されています。図4では、30分から 17時間の時間基線を有するスタイン氷河と周辺地域の差分 干渉画像が示されています。17時間の干渉画像は、1msのチャープ時間で取得した2つのデータ間で得られました。そのため、この場合の距離範囲は4.68kmに制限されます。それ以外

図5.上段:車載SARの差分干渉画像(左)とコヒーレンス(右) —それ ぞれマルチルック強度画像と合成されています。3Dビューでのスタイ ン氷河と周辺地域の時間基線は1020分(17時間)です。下段:空間基 線ゼロ、時間基線3分に対するUAV搭載差分干渉位相(左図)とコヒー レンス(右図)。近距離の森林地帯とフォーショートニングが大きかっ た領域を除き、非常に高いコヒーレンスが得られ、干渉位相も安定し ています。

の全ての干渉画像は、2msのチャープ持続時間で取得したデ ータに基づいています。

搬送周波数が1.325 GHz(波長22.6 cm)の場合、2πの干渉 位相値は11.3 cmの視線方向の変位に換算されます。図5で は、氷河データの時間基線17時間およびUAV搭載データの時 間基線3分に対する干渉位相とコヒーレンスについて3Dで可 視化した画像が示されています。2回のUAV搭載リピートトラ ックの飛行管(飛行軌跡の空間的ズレ)は半径1m以内です。

Ⅳ.考察

短時間(車載の場合は30分、UAV搭載の場合は3分)のリ ピートパス干渉画像の位相が安定していることから、SAR画 像の結像(再生)の質が高いことや位置決めの処理が十分な 品質を備えており、Lバンドの波長と比較して未知の位置的 誤差が非常に小さな残差しか得られなかったこと、また間隔 が短い場合は対流圏による変動も小さいことが確認されま した。これは、一連の処理が車載型またはUAV搭載型のどち らの場合でも、リピートパスInSARシステム全体の品質が良い ことを示しています。スタイン氷河で得られた時系列を見る と、2番目の干渉画像ペアで氷河の限られた領域での大きな 動きが観測されていますが、氷河の大部分の領域はずっとゆ っくりと動いています。 氷河流による変位位相は時間とともに徐々に増加し、17時 間の干渉画像は位相サイクル全体に達しました。これは、約 11cm以上の視線方向の変位に対応しました。時間基線の増 加に伴い、より低周波の位相トレンドが徐々に現れ、対流圏 の状態が時間的に変動していることを表しています。UAV搭 載の場合、近距離の森林地帯とフォーショートニングの大き な地帯を除き、高いコヒーレンスが得られ、InSAR位相も安定 しており、リピートパスInSARシステムの優れた性能を実証し ています。ただし、使用したDEMと植生高の不整合および体 積の非相関により森林地帯において位相のわずかな増加と コヒーレンスの減少が見られました。

謝辞

本産学共同研究プロジェクトは、Innosuisseによる支援 を受けています(P.-No. 18159.1)。協力いただいたAeroscout 社およびUAV実証試験を支援いただいたJinhwan Jang氏 とSang-Hoon Hong氏に感謝の意を表します。また、Leica GNSS基地局を貸してくださりましたETHチューリッヒのAlain Geiger氏とMichael Meindl氏にも厚く御礼を申し上げます。

参考文献

[1] C. L. Werner, T. Strozzi, A. Wiesmann, and U. Wegmuller, "A real-aperture radar for ground-based differential interferometry," in Proc. IEEE Int. Geosci. Remote Sens. Symp., vol. 3, July 2008, pp. 210–213.

[2] G. Luzi, M. Pieraccini, D. Mecatti, L. Noferini, G. Guidi, F. Moia, and C. Atzeni, "Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 11, pp. 2454–2466, Nov. 2004.

[3] D. Leva, G. Nico, D. Tarchi, J. Fortuny-Guasch, and A. Sieber, "Temporal analysis of a landslide by means of a ground-based SAR interferometer," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 745–752, Apr. 2003.

[4] O. Frey, C. L. Werner, and U. Wegmuller, "GPU-based parallelized time-domain back-projection processing for agile SAR platforms," in Proc. IEEE Int. Geosci. Remote Sens. Symp., July 2014, pp. 1132–1135.

[5] O. Frey, C. Magnard, M. Rüegg, and E. Meier, "Focusing of airborne synthetic aperture radar data from highly nonlinear flight tracks," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 6, pp. 1844–1858, June 2009.

[6] O. Frey, E. Meier, and D. Nüesch, "Processing SAR data of rugged terrain by time-domain back-projection," in SPIE Vol.
5980: SAR Image Analysis, Modeling, and Techniques X, 2005. [7]
A. Ribalta, "Time-domain reconstruction algorithms for FMCW-SAR," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 396–400, May 2011.

[8] O. Frey, C. L. Werner, U. Wegmuller, A. Wiesmann, D. Henke, and C. Magnard, "A car-borne SAR and InSAR experiment," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2013, pp. 93–96.
[9] C. Stringham and D. G. Long, "GPU processing for UAS-based LFM-CW stripmap SAR," Photogrammetric Engineering & Remote Sensing, vol. 80, no. 12, pp. 1107–1115, 2014.