| tting Start |

Usmg

NHHT—TTONWNOHT>O

with

| TNTmlp‘s®

TNTed ™
“TINTview® ™

Before Getting Started

Some mapping projects may require the use of specialized symbolsfor linesand
pointsin vector and CAD objects. The cartographic scripting languagein TNT-
mips®, TNTview®, and TNTedit™ providesacomplete and flexible set of drawing
functions that allow you to design custom map symbols for many applications.
CartoScripts extend the symbol-creation capabilities found in the standard point
and line style editors in the TNT products. The exercisesin this booklet intro-
duce the most commonly-used CartoScript functions, and provide many sample
CartoScriptsfor point and line symbols.

Prerequisite Skills Thisbooklet assumesthat you have completed the exercises
inthefollowing Getting Started bookl ets: Displaying Geospatial Data, Navigat-
ing, Creating and Using Styles, and Building and Using Queries. Those exercises
introduce essential skills and basic techniques that are not covered again here.
Please consult those booklets and the TNTmi ps reference manual for any review
you heed.

Sample Data The exercises presented in this booklet use sample data that is
distributed withthe TNT products. If you do not have accessto aTNT products
CD, you can download the datafrom Microlmages web site. In particular, this
booklet uses the cartosmp, Towns and cemAaP Project Files in the carToscr data
collection. Install the samplefileson your hard drive so changes can be saved as
you work with them.

More Documentation Thisbooklet isintended only as an introduction to using
CartoScriptsto style vector or CAD elements. For more information consult the
Display Volume of the TNTmipsreference manual .

TNTmips and TNTIite® TNTmips comesin two versions. the professional ver-
sion and the free TNTIite version. This booklet refers to both versions as
“TNTmips.” If you did not purchase the professional version (which requiresa
hardware key), TNTmips operatesin TNTIlite mode, which limits object sizeand
doesnot allow export. All of the exercises can be completedin TNTlite using the
sample geodata provided.

Randall B. Smith, Ph.D., 28 August 2002
©Microlmages, Inc., 1999

It may be difficult to identify the important points in some illustrations without a
color copy of this booklet. You can print or read this booklet in color from
Microlmages’ web site. The web site is also your source for the newest Getting
Started booklets on other topics. You can download an installation guide, sample
data, and the latest version of TNTIlite.

http://www.microimages.com

page 2

Welcome to Using CartoScripts

The style editorsin TNTmips and TNTview allow
you to select, modify, combine, or create awideva
riety of standard point and line symbols, asdescribed
in Getting Sarted: Creating and Using Styles. For
those instances in which the standard style editors
cannot provide the appropriate symbol, you can use
CartoScripts™ to design custom map symbols for
pointsand lines.

CartoScriptsare style scriptsthat utilize specia func-
tions in the TNTmips Query language (in the
Cartoscriptsfunction group). The CartoScript func-
tions allow you to draw and navigate along line
elements and to draw new lines and shapesto form
symbols. Symbols can be repeated along line ele-
ments or drawn singly for point elements. You can
add label sto the symbols using text from associated
database tables and optimizelabel placement within
asingledrawing layer. You can also structure ascript
to use element attributesto vary the symbol styling.

The exercisesin this booklet introduce and explain
the most commonly-used CartoScript functionsand
show how you can structure scriptsto produce vari-
ouseffectsfor point and line symbols. CartoScripts
are subject to the same syntax rules as standard
database queries and SML scripts. For areview of
basic query syntax, consult Getting Started: Building
and Using Queries.

Geologic maps are one example of maps requiring
specialized point and line symbolsthat can bedrawn
using CartoScripts. Point symbolsare used toindi-
catethe orientation of outcrop-scale structures, while
special line symbolsare used to represent map-scale
features. Several of theexercisesinthisbooklet use
geological examples to illustrate elements of
CartoScript structure.

¥

STEPS

M make sure the sample
files mentioned on page
2 have been copied to
your hard drive

start TNTmips

choose Display / Spatial
Data from the main
menu

RE

The exercises on pages 4-
19 illustrate the use of
CartoScript functions to
create point symbols. Pages
4-8 introduce the basic
functions used to draw lines
and simple geometric
shapes. Pages 9-19 lead
you through adding text
labels from database fields,
drawing more complex
symbols, varying symbol
orientation by attribute, and
optimizing label placement.

The exercises on pages 20-
33 show you how to use
CartoScripts to create line
symbols. Basic line
navigation and drawing
functions are introduced on
pages 20-22. Script
structures to create repeated
symbols and placement of
text labels for lines are
explained on pages 23-33.

Use of CartoScripts with
legends is discussed on
pages 34-37, and pages 38-
39 provide a complete list of
available CartoScript
functions.

symbols from the Microlmages web site:

You can download additional sample CartoScripts for geological point and line

www.microimages.com / freestuf / cartoscripts

page 3

Using CartoScripts

Draw Simple Point Symbols

STEPS

)

click the New 2D
Group icon
button on the Display

toolbar
click on the Add El
Vector icon button

in the Group Controls
window and choose Add
Vector Layer

navigate to the carTosmp
Project File in the
cARTOSCR data collection
and select the sampLES
vector object

click on the Points tab on
the Vector Layer
Controls window

select By Script from the
Style option menu and
click [Specify...]

choose Open / RVC
Object from the File
menu in the Query Editor
window

select object FLAGQRY
from the carTOSMP
Project File

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

The CartoScript you openinthisexercise

(shown in the box below) draws the flag

symbol shown to theright. Thefirst line

in the script is a comment line with the

script name (remember that commentsare

preceded by the “#’ character). The LineStyleSet-
Color()) functioninLine2 setsRed, Green, and Blue
values (between 0 and 255) that determinethe color
of lines drawn by the drawing functionsthat follow
(inthiscase, red lines). Thefunctionin Line 3 sets
thelinewidth for the drawing functions (more about
thisbelow).

The remaining script lines actually draw the sym-
bol. TheLineStyleLineTo() function drawsaline
to the point specified by a direction (first numeric
parameter) and distance (second parameter). The
LineStyleMoveTo() function usesthe same sequence
of parameters to move the “pen” location without
drawing. Both functions reference alocal coordi-
nate system centered on the current point element
(the script isread and evaluated once for each point
element in the object). Directions for these func-
tionsare specified by angles (0to 180 and 0to -180)
relative to the positive x axis of the object coordi-
nate system. Object coordinates also provide the

oO~NO O~ WNPRE

FlagQy

Li neStyl eSet Col or (225, 0, 0);
Li neStyl eSet Li neWdt h(1);

Li neStyl eLi neTo(90, 20);

Li neStyl eLi neTo(- 30, 8);

Li neStyl eLi neTo(- 150, 8) ;

Li neSt yl eMoveTo(- 90, 12);

Li neStyl eLi neTo(0, 8);

default unitsfor the distance parametersin
thesefunctions, aswell asfor thewidth pa
rameter in the LineStyleSetLineWidth()
function. Thesequence of drawing actions
isillustrated below, with the dot indicating
the pen position at the end of each action.

LineTo(90,20)
+90

LineTo(-30,8)

LineTo(-150,8) MoveTo(-90,12) LineTo(0,8)

Using CartoScripts

Using Anchors

STEPS
M click the Vector

In the sequence of drawing movements in the flag

script in the previous exercise, the pen position re-
turns to the origin of the local coordinate system
before drawing the final line at the base of the flag.
The simple geometry of the flag symbol makes it
relatively easy to calculatethe angle and distancefor
the LineStyleMoveTo() function in Line 7 that
moves the pen to the origin. But you can avoid the
need for such calculations by using anchors: posi-
tions you record for later use in a set of drawing
actions. The LineStyleDropAnchor() function sets
an anchor position and assigns it the number you
enter asthe numeric parameter for thefunction. The

icon button in the
Layer icon row to open
the Vector Layer
Controls window

M reopen the Query Editor

window for point styles

M delete the statement with

the LineStyleMoveTo()
function and insert the
statements shown in
bold text below

click [OK] in the Query
Editor window and again
in the Vector Layer

Controls window

LineStyleMoveToAnchor() function movesthe pen
to the specified anchor position. Thereisaso

a LineStyleLineToAnchor() function that [Li neStyleSet Col or (225, 0,0);
draws aline from the current pen position to '[: 223 y: g;eto"'Ang\g?E Tg b
the specified anchor position. You can es- || nest §| eli nETO(90, 20) ;
tablish multiple anchor points to aid in [Li neStyl eLi neTo(- 30, 8) ;
drawing complex symbols, and use them in [Li neStyl eLi neTo(- 150, 8);
any order. Inthe script on thispage, weplace t: Eggx: i/it’xggfgcgg’_r(l);
an anchor at the origin before ||| nestyl el\/bveToAn’cho’r (1);

beginningto draw, andreturnto |Li neStyl eLi neTo(- 135, 8) ;

the anchor position twice more

todraw linesfrom the base of the
= Inzert Function H=E]

flag.
@ Function Group... |Dartnscript

LineStyleDrauThreePointAre 3
LineStyleGetDirection
LineStyleGetDistanceTo
LineStyleGetLineCurvature i

Sty (Eiboe You can manually

File Edit Insert I Sgntaﬂl/ enter function

=1

#4 Flaglry Field, .. names, database
'ﬁ::ﬁ:gi:g::[Synbol.. . . field names, symbol
LineStu].eI]r_‘uF Function, .. names, or operators, Memerd Errrers [en peeisien o
or use the options on
the Insert menu to
insert the required

items into the script.

LineStyleDropAnchor{anchor} Y

DOperator, ..
anchor ; nunber <{optional}

LineStylel ine Keyuword, . .
Line5tyleHove
LineStyleline “-""7%** |
LineStyleHoveTofAnchor{1}

Class, .. Returns ! nunber

Create date: 01-Dec-1997
Hodify date:; none

LineStylel ineTo{-135,8)

Available in SHL for Hindous: Ho

Choose Cartoscript from the Function - i =
Group menu to see a function list with
only the CartoScript style functions.

Close Insert Details...

page 5

Using CartoScripts

Using Built-in Geometric Shapes

STEPS

M reopen the Query Editor
window for point styles

M edit the script to
duplicate the text below;
the new statement is in
bold type

Several functionsthat draw simple geometric shapes
are included in the CartoScript function set. The
LineStyleDrawRectangle() and LineStyleDrawCir-
cle() functionsdraw their respective shape centered
on the current pen position, which isleft unchanged.

Thefirst script for thisexercise drawsafilled

Li neStyl eDr opAnchor (1) ;
Li neStyl eLi neTo(90, 20);
Li neStyl eLi neTo(- 30, 8);

Li neStyl eLi neTo(- 150, 8) ;

Li neStyl eMoveToAnchor (1) ; and height of therectangle. Thethird
Li neStyl eDr awRect angl e(10, 5, 0, 1) ;

Li neStyl eSet Col or (225, 0, 0); | rectangleat the baseof theflag symbol. Four
LineStyl eSet Li neWdth(1); numeric parameters are used in thisinstance

to control the rectangle function: width,
height, angle, and dofill. The first two pa-
rameters are required, and specify the width

(optional) parameter specifiesarota

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

M reopen the Query Editor
window

M replace the last line in
the script with the
statement shown below

tion angle, which in this example is equal to zero.
Thelast parameter (also optional) determineswheth-
er the shape isfilled with the current line color (1),
or left unfilled (0).

The second example in this exercise draws an un-
filled ellipse at the base of the flag symbol. The
LineStyleDrawEllipse() function hasup to 7 param-
eters: angle, distance, radius_x, radius y, rotangle,
isAngleAbs, and dofill; the first four are required.
Theinitial angle and distance parametersallow you
to automatically movethe pento anew position be-
foredrawing. Inthisexample, both are set to zero,
leaving the ellipse centered on the base of the flag.
The pen returnsto the ellipse center after drawing.

Li neStyl eDrawEl | i pse(0,

The elipse dimensions are ini-

0,8,3,30,0,0); | ..
) tially set parallel tothex and y

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

coordinate axes by the two radius parameters(inthis
example, 8 and 3 units, respectively). The value of
30 for the angle parameter rotatesthe ellipse 30 de-
grees counterclockwise. TheisAngleAbsparameter
determines whether the ellipseis drawn and rotated
relative to the local coordinate system (0), or rela-
tiveto global object coordinates(1). Thisdistinction
doesnot exist for point data, but becomesimportant
when styling lines, aswewill seelater.

page 6

Using CartoScripts

Recording and Drawing Polygons

STEPS

Styling for the ends of linesis set using the Line-
StyleSetCapJoinType() function, which hascapstype
and jointype parameters. The capstype parameter
draws sguare line ends when set to 1, or rounded
endswhen setto 0. Thejointype parameter usesthe
same values to determine styling for the

“

“

reopen the Query Editor
window for point styles
edit the script to
duplicate the text below,
adding the statement
shown in bold type

ends of segments of a polygon outline or
polyline. The default value for both pa-
rametersis 0, so rounded ends are drawn
if you do not include this statement in a
script.

Li neStyl eSet Col or (225, 0, 0);

Li neStyl eSet Li neWdt h(1);

Li neStyl eSet CapJoi nType(1, 1);
Li neStyl eLi neTo(90, 20);

Li neStyl eLi neTo(- 30, 8);

Li neStyl eLi neTo(- 150, 8);

Thescript inthe second half of thisexercisedrawsa
solid-color flag symbol by drawing thetriangular flag
element asafilled polygon. You candraw simpleor
complex polygon shapes by using functionsto exe-
cute the following steps: 1) initiate recording of
vertex locations; 2) move to or draw lines to each
vertex locationinturn; 3) connect the verticesto draw
the polygon. The LineStyleRecordPolygon() func-
tion hasasingle start_stop parameter; avalue of 1
starts recording vertex locations specified by pen
movements in subsequent statements. The Line-
StyleDrawPolygon() function formsapolygon using
therecorded vertices, and has asingle dofill param-
eter (setto 1inthisexampletofill thetriangle). The

LineStyleDrawPolygon() function also stopsthere-

]

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

M reopen the Query Editor

window

M change the values for

“

the cap and join
parameters as shown,
and add the statements
shown in bold

click [OK] in the Query

cording of vertex
locations, so thereis
no need to explicitly
stop recording witha
LineStyleRecord-
Polygon(0) statment
following the vertex
movement list. You
can also usethesame

Li neStyl eSet Li neW dt h(1);

Li neStyl eLi neTo(90, 20);
Li neStyl eDr opAnchor (2);

Li neStyl eLi neTo(- 30, 8);

Li neStyl eLi neTo(-150, 8);
Li neStyl eMoveToAnchor (2);
Li neStyl eDr awPol ygon(1);

Li neSt yl eRecor dPol ygon(1);

Li neStyl eSet Col or (225, 0, 0);

Li neStyl eSet CapJoi nType(0, 0);

Editor window and
again in the Vector
Layer Controls
window

structure to record vertex locations to connect as
segments of a single line with the LineStyleDraw-
Polyline() function.

)

select Close from the
Group menu when you
have completed this
exercise

page 7

Using CartoScripts

Using 3D Shapes

STEPS :

M click the Open @
icon button on
the Spatial Data Display
toolbar and choose
Open Group from the
menu

M select the CuseGrour
object from the carTosmp
Project File

M click the Vector
icon button in the
Layer icon row for the
SAMPLES layer to open the
Vector Layer Controls
window

M open the Query Editor
window for point styles
and examine the script
CuBeQRryl

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

Li neSt yl eDr awCube()

CubeQyl

Set di nensions of cube synbol

wi dth = 15;
depth = 0.5 * width;
hei ght = width;

Set color for cube faces
blue = 0;

red = 255; green= 0;

Draw cube synbol

Li neStyl eSet Col or (0, 0, 0);

CartoScript functionsare also available to draw per-
spective renderings of simple three-dimensional
shapes. a rectangular solid, vertical cylinder, and
vertical cone. Edgelinesin each symbol are drawn
using the color specified by the LineStyleSetColor()
function. Three color parametersfor each function
set the red, green, and blue values for thefill color.
The cube symbol isdrawn with the base of the front
face centered on the current pen position. The cyl-
inder and cone symbols are drawn so that the center
of the basal ellipse coincides with the current pen
position.

Thewidth, depth, and height parametersfor theLine-
StyleDrawCube() function specify thelengths of the
corresponding edges of therectangular solid. If you
want the symbol to appear in perspective as atrue
cube, asinthisexercise, thewidth and height should
be equal and the depth value should be about half
the length of the other dimensions.

You can define numeric or string variablesin ascript
for later use asfunction parameters. Defining vari-
ables (with comments) at the beginning of a script
makesit easier to find and edit necessary parameter
valueswhen you are reusing and modifying ascript.

Li neStyl eDrawCyl i nder ()

Li neStyl eDr awCone()

line color for edges

Li neStyl eSet Li neW dt h(0) ;
Li neStyl eDr awCube(wi dt h, dept h, hei ght, red, green, bl ue);

page 8

Using CartoScripts

Text Labels from Database Fields
STEPS E

The script in this exercise adds aboxed text label to
M click the Vector

the cube symbol. The additional statements needed
to format and draw the label are shown below. The
label is asample number stored as a numeric value
in adatabasefield. In order to useit asalabel, the
number must first be converted to atext string and
assigned to astring variable using the sprintf() func-
tion. Thefirst parameter in thisfunction isastring
(in quotes) with formatting information; “%d” indi-
catesaninteger value. Thesecond parameter inthis
case is the location of the numeric value, specified
intheform TableName.FieldName.

Text label sare drawn with the lower left corner cor-
responding to the pen position. Theorientation of a
label is set by the angle parameter. The border pa-
rameter specifies the width of the border between
the text label and its surrounding box. The last pa-
rameter shown here, isAbs(0), indicatesthe reference
frame of the angle parameter.

Read sanpl e nunber from database field and
convert to text string for use as a | abel

| abel $ = sprintf(“%”, Sanpl es. Nunber) ;

String variable for |abel text font
font$ = “ARI ALBD. TTF";

Define color variables for text

icon button for the
SAMPLES layer to reopen
the Vector Layer
Controls window

M open the Query Editor

window for point styles

M choose Open/RVC

Object from the File
menu

M select object CuseQry2

in the carTosmp Project
File

M click [OK] in the Query

Editor window and again
in the Vector Layer
Controls window

You should get in the
habit of terminating each
statement in a script with
a semicolon (;). This
helps the syntax checker
pinpoint the location of
syntax errors.

tred = 0; tgreen= 0; tblue = 0;

Define fill color variables for text box

fillred = 255; fillgreen = 255; fillblue = 170;
Define height, angle, and border wi dth of text box
t _height = 10; angle = 0; border = 2;

Set color and font for text I|abel

Li neStyl eSet Text Col or (tred, tgreen,tblue,fillred,

fillgreen,fillblue);
Li neStyl eSet Font (font $);

Move pen to right of synbol and draw | abel
Li neStyl eMoveTo(0, width * 1.2);

Li neSt yl eDr awText Box(| abel $, t _hei ght, angl e, border, 0);

page 9

Using CartoScripts

Setting Coordinate Type Options

STEPS

M zoom in and out and
note the effect on the
relative sizes of point
symbols and contours

reopen the Vector Layer
Controls window for the
sampPLES layer and Query
Editor window for point
styles

choose Open/RVC
Object from the File
menu

select object CuBeQRY3
from the carTOSMP
Project File

Thedefault unitsfor the sizeand distance valuesyou
usein CartoScriptsareininternal object coordinates
(metersfor the objects you have used in these exer-
cises). Thusasyou change zoom levels, the size of
the symbolson the screen change asthe display scale
changes, maintaining a constant sizein object coor-
dinates. Thescriptinthisexercise addsthe statement
shown in bold typeto the previous CubeQry2 (along
with changesinthe symbol and label sizevalues). A
parameter value of 1 for the LineStyleSetCoord-
Type() function changesthe size and distance units
to millimeters at the current display scale or print

scale. Whenyou changezoom levelsor

CubeQy3

Set dinensions of cube synbol
Li neSt yl eSet Coor dType(1);

width = 4;

depth = 0.5 * width;

hei ght = width;

M click [OK] in the Query

print scales, symbolsmaintain aconstant
display sizeinmillimeters. Thissetting
works best with layouts designed only
for display (A value of O for this pa
rameter is equivalent to the default
condition).

Editor window and again
in the Vector Layer
Controls window

zoom in and out and note
the effect on the relative
sizes of the symbols and
contour lines

select Close from the
Group menu when you
have completed this
exercise, and click [No]
on the dialog when you

If you are using CartoScripts to draw map elements
designed for printing at a particular scale (such as
1:24,000), you can use the default coordinate setting
to maintain therelative sizesof different elementsat
different zoom levelsfor screen display, but usethe
map scale to compute the element sizes needed to
produce the desired sizes on the final printed map.

are asked
whether to
save changes
to the group

| 8

Seethe script on pages 14-15 for an example of this
Different
zoom levels

scaling approach.
with scaling \

Different zoom levels with default scaling to
object coordinates. The point symbol has a
constant size in object coordinates.

to millimeters. The point symbol main-
tains a constant size in screen (or
print) coordinates.

page 10

Using CartoScripts

3D Cylinder Bar Graph

The 3D symbols can be combined together to form
3D bar graphs, with the height of each bar deter-
mined by the value in a database field. You can
changethe perspective of the cylinder and conesym-
bols by varying the relative lengths of the long and
short axes of the cylinder and cone base.

The LineStyleTextNextPosition() function is used
in this script to approximately center the “Cu” ele-
ment label below its cylinder. The first four
parameters of this function specify the string, its
height, angle, and local or absolute coordinate refer-
ence. Thelast three parameters, next_x, next_y, and
length, are variables which the function creates to
hold the x-coordinate, y-coordinate, and length of
the label string. These values can be used in subse-
guent statements to guide positioning.

Read val ues for el enent abundances from
dat abase and assign to variables to use
for cylinder heights

cuVal = Geochemi stry. Cu;

pbVal = Geochemi stry. Pb;
znVal = Geochemistry. Zn;

Set edge line color and cylinder dinensions

Li neStyl eSet Col or (0, 0, 0);

l ongAxi s = 120; short Axis = 50;
Set text color and font

Li neStyl eSet Text Col or (0, 0, 0);

Li neStyl eSet Font (“ARI ALBD. TTF") ;

Draw three cylinders side by side
Li neStyl eDr opAnchor (1) ;

STEPS
M click the New 2D

Group icon
button on the Display
toolbar

click on the Add E
Vector icon button

and choose Add Vector
Layer

select the GEocHEMVEC
object from the carTosmpP
Project File

set point styling to By
Script and open the
Query Editor window
choose Open / RVC
Object from the File
menu

select object CyLINGRAPH
in the carTosmp Project
File

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

Cu Pb Zn

Li neStyl eDrawCyl i nder (1 ongAxi s, short Axi s, cuVal , 255, 0, 0) ;

Li neStyl eMoveTo(0, | ongAxi s);

nmove right by width of cylinder

Li neStyl eDrawCyl i nder (1 ongAxi s, short Axi s, pbVal , 0, 255, 0) ;

Li neStyl eMoveTo(0, | ongAxi s);

Li neStyl eDrawCyl i nder (1 ongAxi s, short Axi s, znVal , 0, 0, 255) ;

Draw | abel centered bel ow each cylinder
Li neStyl eMoveToAnchor (1) ;
Li neStyl eMoveTo(- 90, 100);

nmove to base of first cylinder
nmove down to nmake room for | abel

Li neStyl eText Next Posi ti on(“Cu”, 70, 0, 0, next _x, next _y, | ength);

Li neStyl eMoveTo(180, 1 ength * 0.4);
Li neStyl eDrawText (“Cu”, 70, 0, 0) ;
Li neStyl eMoveTo(0, | ongAxi s);
Li neStyl eDr awText (“Pb”, 70, 0, 0) ;
Li neStyl eMoveTo(0, | ongAxi s);
Li neStyl eDrawText (“Zn”, 70, 0, 0) ;

nove | abel point to left
to center first |abel
nmove right by width of cylinder

M remove the ceocHemvec layer when }(
you have completed this exercise

page 11

Using CartoScripts

Orienting Symbols by Attribute

STEPS El

M click on the Add

You can use a script to draw symbols that vary in

Vector icon button and
choose Add Vector
Layer

select the ARROWPTS
object from the carTosmp
Project File

set point styling to By
Script and open the
Query Editor window
choose Open/ RVC
Object from the File
menu

select object ARRowQRY1
in the carTosmpP Project
File

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

orientation depending on adirection valueread from
a database field. In this instance the arrow direc-
tionsarein azimuth form (0 to 360° angle measured
clockwise from north), and must be converted to the
internal coordinate system used by the drawing func-
tions. This script also convertsall negativedirection
valuesto the corresponding positive values, but this
conversionisnot required.

The LineStyleDrawArrow() function draws arrow-
heads bounded by straight lines whose length is
defined by the headSize variable in this script. The
angle between these bounding lines is set by the
sweepAngle parameter. If thedofill parameter is set
to 1, thehead isfilled to form a solid triangle. The
function updates the pen position to the tip of the

arrow head. Arrow heads do not render well with a
line width larger than O, so this script draws the ar-
row with O line width, then redraws the arrow stem
with awider line.

|\l/head8ize

\ sweepAngle

Read azimuth from database table
azim = Direct. Azi mut h;
Convert azinuth to internal

coordi nate system

direction = -(azim- 90);
if (direction < 0) then direction = direction + 360;
Set col or values for synbol
red = 0; green = 0; blue = 0; <—

Li neStyl eSet Col or (red, green, bl ue);
Set dinensions for arrow
arrowLength = 30;

headSi ze = 0.4 * arrowLengt h;
sweepAngl e = 40; dofill = 1;

Draw arrow with zero line width,
Li neStyl eDr opAnchor (0) ;

Li neStyl eSet Li neW dt h(0) ;
Li neStyl eDr awAr r ow(di recti on, arr owLengt h, headSi ze, sweepAngl e, dofill);
Li neStyl eDr opAnchor (1) ; # anchor at tip of arrow

Redraw arrow stemwi th wider |ine

stenLength = arrowlLength - headSi ze * cosd(sweepAngl e);

Li neStyl eMoveToAnchor (0);

Li neStyl eSet Li neW dt h(1.5);

Li neStyl eLi neTo(direction, stenLength);

Li neStyl eMoveToAnchor (1); # pen to arrow tip in prep for |abel

N

of stem at point
at point

tip
anchor

page 12

Using CartoScripts

Calculating Label Positions

The script in this exercise adds alabel with the azi- | STEPS

muth to each arrow symbol from the previous | ¥ reopen the Query Editor
window for point styles

exercise. The additional statements needed to for- | & choose Open / RVC

mat and draw thelabelsare shown below. Thetricky Object from the File
partisvarying thelabel position based on thearrow menu

orientation to avoid overlap between the arrow and | ¥ Select object ArrowQry2
. . . . in the carTosmp Project
itslabel. The script computes two pen shiftswhich File

areapplied beforethelabel isdrawn, asexplainedin | & click [OK] in the Query
the comments. Each is computed as a function of Editor window and again

in the Vector Layer

the direction angle and the height and length of the Controls window

label string. Thesecond shift must be computed sep-
arately for each quadrant, being careful that the

resulting distanceisapositivevalue (valuesfor dis- | @ remove the X
tance parameters of drawing functions must be ArrOWPTS layer
positive; a negative value isinterpreted as equal to when you have

completed this exercise
0).

Convert azinuth value to text string for use as a | abel

| abel $ = sprintf(“%”, azim;

Find length of |abel text for |abel positioning

hei ght = 10;

Li neSt yl eText Next Posi ti on(| abel $, hei ght, 0, 0, next _x, next _y, | engt h);
Set font name and col or

Li neStyl eSet Font (“ARI ALBD. TTF") ;

Li neStyl eSet Text Col or (red, green, bl ue);

Conpute |abel shift perpendicular to arrow to center |abel
shiftl = 0.5 * (hei ght*cosd(direction) - |ength*sind(direction));

Conpute |abel shift parallel to arrow to avoid overwiting arrow
of fset = arrowLength * 0.1;

if (direction >= 0 and direction < 90) then 12
shift2 = offset;

else if (direction >= 90 and direction < 180) then
shift2 = offset - length * cosd(direction);

else if (direction >= 180 and direction < 270) then
shift2 = offset - length * cosd(direction)

- height * sind(direction);
else if (direction >= 270 and direction <= 360) then
shift2 = offset - height * sind(direction); 270 d—
shift pen position and draw | abel
if (shiftl <0) { # MoveTo di stances can’'t be less than 0
shiftl = abs(shiftl); # absol ute val ue

Li neStyl eMoveTo(direction + 90,shiftl); } \
el se LineStyl eMoveTo(direction - 90,shiftl);
Li neStyl eMoveTo(direction, shift2) 134

Li neSt yl eDr awText (| abel $, hei ght, 0, 0)

page 13

Using CartoScripts

Drawing Strike and Dip Symbols

STEPS

]

]

16// Inclined

click on the Add El

Vector icon button and
choose Add Vector Layer
select the BepbiNG object
from the carTosmp Project
File

set point styling to By
Script and open the
Query Editor window
choose Open /RVC
Object from the File
menu

select object BEbDINGQRY
in the carTosmp Project
File

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

select Close from the
Group menu when you
have completed this
exercise

Beddi ngQy
Read strike azimuth and dip value fromtable.field

88
\5(Overturned

Geol ogic maps use specia point symbolstoindicate
the orientation of planar or linear structuresin rock
outcrops. Thescript inthisexercise draws standard
symbols showing the strike and dip of layering (bed-
ding) in sedimentary rocks, asshown below. It uses
many of the functions and conceptsintroduced pre-
viously. The dip and strike are read from an
associated databasetable. (Thestrikeangle must be
specified asan azimuth using the so-called right-hand
rule; the strike line points toward the azimuth for
whichthedip directionistotheright.) The symbol
isoriented so that the long (strike) lineisparallel to
the strike direction, and the symbol is labeled with
thevalueof thedipangle. Specia symbolsaredrawn
for horizontal and vertical beds (specia values of
thedip angle), and for overturned beds (indicated by
alogical field in the database). The second half of
the script, which label sthe symbolswith the dip val -
ue, resembl esthe script on the previous page, and is
not shown here.

@ Horizontal

\ Vertical

azStri ke = Bedding. Stri ke; di p1 = Beddi ng. Di p;

Check logical field for overturned bedding. Variable is set
#to1lif Yes, Oif No

overturned = Beddi ng. Overt ur ned;

Vari abl es define the color of the synbols and | abel

red = 0; green = 0; blue = 0;

This variabl e defines the denom nator of the intended map scal e.
scal e = 5000;

These vari abl es define the dinensions and |ine wi dths of the
synbol . strikeLengthMap is the desired |l ength of the synbol
strike line in mm assum ng vector coordinates are in neters.

lineWdthMap is the desired line width in mm
stri keLengt hMap = 6; lineWdthMap = 0. 3;
strikeLength = strikeLengthMap * scale / 1000;
hal fLength = 0.5 * strikelLength;

tickLength = halfLength / 3;

doubTick = tickLength * 2;

lineWdth = |ineWdthMap * scale / 1000;

page 14

Using CartoScripts

Strike and Dip Script (continued)

#H###HH# Process
Convert strike azinuth to internal coordinate system
direction = -(azStrike - 90);
if (direction < 0) then
direction = direction + 360;
oppStrike = direction -180;
dipDir = direction - 90;
oppDip = dipDir - 180;

Set line color, width, and end type

Li neStyl eSet Col or(red, green, blue); # set synbol color
Li neStyl eSet Li neW dt h(1i newdth);

Li neStyl eSet CapJoi nType(1,1); # square ends of |ines

#HtHH AR Draw synbol
Speci al synbol for horizontal bedding (cross in circle)
if (dipl == 0){
Li neStyl eDr opAnchor (0) ;
Li neStyl eDrawGi rcl e(hal f Lengt h) ;
Li neStyl eMoveTo(90, hal fLength);
Li neStyl eLi neTo(-90, strikelLength);
Li neStyl eMoveToAnchor (0);
Li neStyl eMoveTo(0, hal fLength);
Li neStyl eLi neTo(180, strikelLength);
}
el se {
For nonzero dip, draw strike line with center at point
Li neStyl eDr opAnchor (0) ;
Li neStyl eMoveTo(direction, hal fLength);
Li neStyl eLi neTo(oppStrike, strikeLength);
Li neStyl eMoveToAnchor (0);

Draw appropriate synbol for dip direction

if (dipl == 90) { # crossbar for vertical bed
Li neStyl eMoveTo(di pDir, tickLength);
Li neStyl eLi neTo(oppDi p, doubTi ck);
}

el se {

if (overturned == 1) { # dip synbol for overturned beds
Li neStyl eDrawArc(0, 0, tickLength, tickLength,

direction, -180, 0); 88
Li neStyl eMoveTo(direction, tickLength);
Li neStyl eLi neTo(oppDi p, doubTi ck); \6(
}
el se { # dip direction tick mark

Li neStyl eLi neTo(di pDir, tickLength);

} 16
} /

page 15

Using CartoScripts

Label Optimization

STEPS :

M click the Open @
icon button on
the Display Spatial Data
toolbar and choose
Open Group from the
menu

M select the opTGROUP
object from the Towns

Project File

M click the Vector E‘|
icon button for the
Towns layer to open the
Vector Layer Controls
window

M open the Query Editor
window for point styles
and examine the script
OrPTQRY1

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

Label Optimization is a
procedure for automatically
finding the optimal set of
positions for point symbol
labels generated from a
database field. The goal is
to avoid overprinting one
label with a nearby symbol’s
label. Individual labels can
be moved or deleted to
avoid these collisions. The
optimizer can automatically
place a label in one of a
number of different positions
around the symbol. The
preferred position places the
lower left corner of the label
on the point. Points can be
ranked using attribute
information, and these
rankings can be used by the
optimizer to give preference
to higher-ranking points
when moving or deleting
labels.

Thedisplay group used in thisexercise showsablock
of counties in eastern Nebraska and the included
townsand cities. Inthescript onthefacing pagethe
1990 populations of thetowns are used to assign each
tooneof threerank values. Therankingsareusedto
draw point symbols of different sizes, and they are
also used by the label optimizer to select labels for
deletion.

A CartoScript is executed once for each element in
an object, yet label optimization requires informa-
tion about all labelsto resolve positioning conflicts.
To solve this dilemma, optimization scripts use the
LineStyleAddToOptimizer() function to collect
information about the dimensionsof each label. After
all points have been processed, the optimizer moves
or deleteslabel sas needed, then callsafunction called
FuncDrawlLabel () to draw the labels. The
instructions for this function must be included in a
function definition in the script, as shown at the
bottom of the facing page. This definition should
specify the font, color, and height of the label, and
include the LineStyleDrawText() or LineStyle-
DrawTextBox() function.

The first four parameters of the LineStyleAdd-
ToOptimizer()) function are used to determine the
dimensions of a label’s bounding rectangle. The
xstart and ystart parameters set the lower left corner
of thelabel, and can beread from theinternal object
coordinatesasshown. Thexlast and ylast parameters,
which set the upper right corner, can be calculated
from the label height and the length parameter
returned by the LineStyleTextNext-Position()
function. A value of O for the dooptimize parameter
limits changes in label position to a single pass
through the point labels. Thefina dodel ete parameter
isused to turn label deletion on (1) or off (0). With
deletionon, aconflicting label of equal or lower rank
may be deleted during optimization.

page 16

Using CartoScripts

Optimization with Ranked Deletion

Display of group “~_— |
with ranked

deletion. Circles RAY
indicate towns for

which the label

was deleted duri EMERALD,
optimization. x DENTON

BENNET,

MAR

Rank towns by popul ation
pop = TownDat a. POP90

There are some random aspects
to label position changes during

if (pop < 1000) then rank = 1; optimization, so redrawing the
el se { group may cause some labels to
if (pop >= 100000) then rank = 3; change position and previously
el se rank = 2; deleted labels to reappear. The
illustration above shows one
Draw circle with size based on rank possible set of label positions.

radius = rank * 500;

Li neStyl eSet Col or (255, 0, 0);

Li neStyl eDrawCi rcl e(radi us, 1) ;

Read | abel text and determ ne dinensions

hei ght = 3500;

Li neStyl eSet Font (“ARI ALBD. TTF") ;

Li neSt yl eText Next Posi ti on(TownDat a. NAME, hei ght, 0, 0, next _x,
next _y, |l ength);

Define paraneters for optim zation

xstart = Internal.x; ystart = Internal.y;
xlast = xstart + |length; ylast = ystart + height;
dooptim ze = 0; dodel ete = 1;

Li neStyl eAddToOpt i mi zer (xstart, ystart, x| ast, yl ast, rank,
doopti m ze, dodel ete) ;

Define required function to draw | abels after optimzation
func FuncDrawLabel () {

Li neStyl eSet Font (“ARI ALBD. TTF") ;

Li neStyl eSet Text Col or (0, 0, 0) ;

hei ght = 3500;

Li neStyl eDr awText (TownDat a. NAME, hei ght, 0, 0) ;

}

page 17

Using CartoScripts

Full Label Optimization

STEPS

M open the Query Editor
window for point styles

M choose Open/RVC
Object from the File
menu

M choose object OpTQRY2
from the Towns Project
File

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

M close the current display
group when you have
completed this exercise,
and click [No] on the
dialog when you are
asked whether to save
changes to the group

Full label optimization isenabled by setting the val-
ue of the dooptimize parameter in the
LineStyleAddToOptimizer() functionto 1. Theop-
timizer then makes multiple passesthrough the point
labels to determine optimal label positions. The
script onthefacing page usesfull optimization with-
out deletionto placelabels. It also assignsdifferent
label sizesand colorsfor townsof different rank, as
illustrated bel ow.

Notethat the FuncDrawL abel () function cannot di-
rectly access any of the variable values assigned in
the main body of the script (including therank vari-
able used by the optimizer). In order to vary the
label drawing style by rank, as in this script, the
FuncDrawL abel () function declaration must repeat
theranking procedure found in the main body of the
script (aswell asthe font assignment, source of the
label text, and other label attributes).

MALMO

wAHog, "
WESTO

VALPARAIS O, FERESCO

FRAGUE COLOH WATE

DAVEY
RAYMOND

maccolm, WAVERLY,

Foor ELKHORNG?

BOYS TOWH

GREENWOOD
MURDOCK,

JAANLEY
ALVO

EMEIJALIJ. & INCOLN|FACLE

DEHTOH

PAL _
BE r?:? JJNAIJ%.LA punpar S BRASKA CITY
Roca YRA CUSE
T SPMﬁE PAHAMA LORTOH
kramgr, HICKMA boucLas

HALLAM FIRTH

BURR

page 18

Using CartoScripts

Full Optimization Script

Label sizes for three sizes of towns

smal | = 2500; ned = 3500; bi g = 4500;

Rank towns by popul ation CartoScript Shortcut

pop = TownDat a. POP90; Any point symbol that you

if (pop < 1000) then { design using the Point Style
rank = 1; height = small; Editor can also be saved as
} a CartoScript, complete with

el se {

declared variables and

1T (pop >= 30000) then { comments. You can use

rank = 3; height = big;

} this shortcut to create the

el se { basic script structure, then
rank = 2; height = ned; add any custom features or
} references to database

fields as needed.

Draw circle with size based on rank
radius = rank * 500;

Li neStyl eSet Col or (255, 0, 0);

Li neStyl eDrawGi rcl e(radi us, 1);

Read | abel text and determ ne dinensions

Li neStyl eSet Font (“ARI ALBD. TTF") ;

Li neStyl eText Next Posi ti on(TownDat a. NAME, hei ght, 0, 0, next _x,
next _y, |l ength);

Define paraneters for optinization

xstart = Internal.x; ystart = Internal.y;
xlast = xstart + length; ylast = ystart + height;
dooptimze = 1; dodel ete = 0;

Li neStyl eAddToOpti m zer (xstart, ystart, xl ast, yl ast, rank,
dooptim ze, dodel ete);

Define required function to draw | abels after optimzation
func FuncDrawLabel () {
smal | = 2500; med = 3500; bi g = 4500;
pop = TownDat a. POP90;
if (pop < 1000) {
height = small; LineStyl eSet Text Col or (0, 0, 0);
}
el se {
if (pop >= 30000) {
hei ght = big; Li neStyl eSet Text Col or (255, 0, 0) ;
}
el se {
hei ght = ned; Li neStyl eSet Text Col or (0, 0, 255) ;
}
}
Li neStyl eSet Font (“ARI ALBD. TTF") ;
Li neStyl eDr awText (TownDat a. NAVE, hei ght, 0, 0) ;
}

page 19

Using CartoScripts

Contour Line Wldth by Script

STEPS
M click the New 2D

Group icon
button on the Display

toolbar
click on the Add El
Vector icon button

in the Group Controls
window and choose Add
Vector Layer

select object coNTOuRs
from the carToswmp

Project File

click on the Lines tab on
the Vector Layer
Controls window

select By Script from the
Style option menu and
click [Specify...]

choose Open / RVC
Object from the File
menu in the Query Editor
window

select object ConQRY
from the carTOSMP

Project File

click [OK] in the Query
Editor window and again
in the Vector Layer

tool to zoom in on g’
the area of closed

Controls window
use the Zoom Box

contours near the bottom
of the object

S

/

CartoScripts can al so be used to draw simple or com-
plex symbols for line elements in vector or CAD
objects. The most basic function for drawing line
symbolsistheLineStyleDrawLine() function, which
has no parameters. It simply draws a solid line for
each line element using the color set by the Line-
StyleSetColor() function and the width set by the
LineStyleSetLineWidth() function. It returnsthe pen
position to the beginning of the line after drawing.

Thescript inthisexercise drawslineswith different
widthsfor major and minor elevation contours. The
origina map has a contour interval of 40 feet, and
every fifth contour (evenly divisibleby 200feet) isa
major contour shown by awider line. In TNTmips,
however, internal Z-valuesare stored in meters. The
script reads the minimum z-value for the line from
thelnternal tableand convertsit tofeet. Theelevation
in feet is then divided by 200 using the modulo
operator, which returnstheremainder of thedivision,
stored herein the variablerem. Thevalue of remis
0 only for major contours, so this value is used to
assign the appropriate width before drawing theline.

ConQy

Read contour elevation & convert to feet

elevm = Internal . M nz;

el evft = round(el evm* 3.28084);

Use nodul o operator to

identify contour elevations

that are not evenly divisible

by 200 (nonzero renuinder)

rem= elevft % 200;

Define widths for

maj or contours

if (rem <> 0) then width = 2;
else width = 6;

Set line color and width and

draw |ine

Li neStyl eSet Col or (170, 85, 0) ;

Li neStyl eSet Li neW dt h(wi dt h) ;

Li neStyl eDrawLi ne();

m nor and

page 20

Using CartoScripts

Other drawing functions can be used in conjunction
with the LineStyleDrawLing() function to create
more complex linesymbols. Thescriptinthisexer- | g
cisefirst drawstheline element asasolid line, then
drawscircles of different size and color at each end
of theline. Thisscript could be used for vector line
elementsyou are editing in the Spatial Data Editor.

A number of functionsare providedto allow youto |
navigate along aline element in order to draw sym-
bol components. The LineStyleSetPosition() func-
tionisused in this script to move the pen position to
the end of each line after marking the start. The

single numeric parameter of
thisfunction specifiesaline
position as a relative dis-
tance between 0 (beginning
of theline) and 1.0 (end of
the ling). You can use the
LineStyleGetPosition()
function to find the current
pen position and assign the
valuereturned to avariable.
Set thisfunction’ssingle pa-
rameter to 0if you want the
returned valueto betherel-
ative position. If you set it

to 1, thevauereturned isthe absolute distance from

Navigating Lines

STEPS

M reopen the Query Editor
window for line styles
choose Open / RVC
Object from the File
menu in the Query Editor
window

M select object
STARTENDQRY from the
carTosmP Project File
click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

Start EndQy

Set radius paraneters for small and

large circles

radiusl = 8; radius2 = 16; dofill = 0;
Set line color and width and draw |ine

Li neStyl eSet Col or (170, 85, 0) ;

Li neStyl eSet Li neW dt h(4);

Li neStyl eDrawLi ne();

Draw small red circle at start of
Li neStyl eSet Col or (225, 0, 0);

Li neStyl eDrawCircl e(radi usl, dofill);
Move to end of line and draw | arge
green circle

Li neStyl eSet Posi tion(1);

Li neStyl eSet Col or (0, 225, 0);

Li neStyl eDrawCircl e(radi us2,dofill);

l'ine

the start in object coordinates.

Relative position on line elements

Start: 0 ——__
using the LineStyleSetPosition() and
LineStyleGetPosition() functions.
Middle: 0.5 Q
End:1.0— _
TN

page 21

Using CartoScripts

Marking Line Vertices

STEPS nl Cartoscripts can also mark line vertices as an aid to
i clickonthe Add editing. Thescriptinthisexercisedrawsaredcircle
Vector icon button in the - .
Group Controls window | & the beginning of each line element, and a green

and choose Add Vector | circleat each subsequent vertex.

Layer
M select object sTREAMS The LineStyleNextVertex() function used in this
from the carTosme script movesthe pen position to the next vertex along
- Zﬂfg:‘ fr':: Linestabon | tN€line. Thefunctionalsoreturnsavalueof 1if the
the Vector Layer eljd of thelinehas been reechgd, or Ootherwise. (The
Controls window LineStylePrevVertex() function movesto the previ-

M select By Script fromthe | ousvertex, and returnsavalue of 1 at the beginning

gfé’:f[g‘;’)iz?fym‘?”” and of theline.) These functions can thus be used in a
M choose Open / RVC “while” loop structure to repeat a set of drawing ac-

Object from the File tions at each vertex. In this script, the “while” loop
menu in the Query Editor | repeats aslong asthe LineStyleNextVertex() func-

window ; :
o select object VErTexQry tionreturnsavalue of 0. Theloop terminateswhen

from the cARTOSMP the function returns a value of 1 at the end of the
Project File line.

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

VertexQy

Set paraneters for circles
marking vertices

radi us = 5; dofill = O;

Draw solid black Iine
Li neStyl eSet Li neW dt h(3);
Li neStyl eSet Col or (0, 0, 0);
Li neStyl eDrawLi ne();

Draw red circle at beginning of line
Li neStyl eSet Col or (225, 0, 0);
Li neStyl eDrawGi rcl e(radi us, dofill);

Wiile not at end of line, nove to
next vertex and draw green circle
Li neStyl eSet Col or (0, 225, 0) ;
whil e (LineStyl eNextVertex() <> 1) {
Li neStyl eDrawGi rcl e(radi us, dofill);

}

M remove the sTreawms layer
when you have completed
this exercise

page 22

Using CartoScripts

Drawing Regularly Spaced Symbols

Line symbolsyou createfor usein map layoutsmay | STEPS _
include components spaced regularly along eachline | © ;Siﬁzg\?vtfhoi fi?n‘éeg’y'lfecztgr
element. Th|§exerC|se|IIgstrat§the pasc structure the conTours object

of such a script by drawing filled circles equally | & choose Open / RVC

spaced along thelines. Object from the File
menu in the Query Editor

TheLineStyleRall() function movesaspecified dis- window
tance along a line element without drawing. The | ¥ select object CircLiNneQRY

. . . from the carTosmP
distance to move is set by the value of the single Project File
function parameter. Thefunctionalsoreturnsaval- | @ click [OK] in the Query
ueof O for any line position except the end, whereit Editor window and again
returnsavalueof 1. By checking thisreturned value in the Vector Layer

o et Controls window

you can usethefunctionina“while” loop structure
torepeat aset of drawing actionsat regular intervals

along eachline.

Parameter values for the

This script is structured to continue drawing circles | LineStyleGetDistanceTo()
I the distance from the current position to function:

aslong as S p 1 = next vertex

the end of the line is greater than the desired spac- | 2 = previous vertex

ing. TheLineStyleGetDistanceTo() functionisused (3 =end ofline

to check this distance. The distanceto variousline |4 = Peginning of line

features can be determined by setting the appropri-

ate parameter value for this function, as shown in

the box to theright.

CircLineQy
Set paraneters for circles

radi us = 6; dofill = 1;
Set spacing between circles
spaci ng = 30;

Set line color and width and draw |line
Li neStyl eSet Col or (170, 85, 0);

Li neStyl eSet Li neW dt h(3);

Li neStyl eDrawli ne();

Draw circle at start of line
Li neStyl eDrawG rcl e(radi us, dofill);

Draw rest of circles
while (LineStyleRoll (spacing) <> 1) {
di st = LineStyl eGet Di stanceTo(3); \
if (dist > spacing) {
Li neStyl eDrawG rcl e(radi us, dofill);
}

page 23

Using CartoScripts

Positions and Coordinate Systems

STEPS

M reopen the Query Editor
window for line styles for
the conTours object
choose Open / RVC
Object from the File
menu in the Query Editor
window

select object TickLINEQRY
from the carTOSMP
Project File

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

o

The CartoScript drawing engine keepstrack of two
positions during execution of ascript. Thefirst is
the current position along aline element, which you
can think of asa*“pointer” that is moved along the
lineby the LineStyleRoall() function or the other line
navigation functions. The second position that is
tracked isthe pen position, which may or may not be
ontheline element.

The current pointer position servesastheorigin of a
local coordinate system that is oriented relative to
the line element as shown in the boxed illustration.
The drawing functions that use angle and distance
parameters to move the pen position or draw ele-

x0
Pointer
Position 1~

o0 “90

Line Start

ments, such as LineStylelLineTo() and
LineStyleDrawArrow(), reference this
local coordinate system. This system
enables you to draw repeated symbol
componentsthat are oriented consistently
relative to the local line direction, such
as the perpendicular tick lines in the
scriptinthisexercise. Thetick linesare

*/~90

\

Pointer
Position 2

TickLineQy

Denom nator of

desired map scal e
scal e = 5000

Desired spacing and
length of tick lines
in mmat map scale
spaceMap = 6; | engthMap

Scal ed spacing and | ength

of tick lines
spaci ng =
length =

Li neStyl eDrawli ne();
Draw tick lines

Li neStyl eLi neTo(90, | ength);

while (LineStyleRoll (spacing) <> 1) {
Li neStyl eMoveTo(0, 0);
Li neStyl eLi neTo(90, | ength);

}

spaceMap * scale / 1000;

| engthMap * scale / 1000;

Set line color and width and draw |ine
Li neStyl eSet Col or (170, 85, 0);

Li neStyl eSet Li neW dt h(3);

drawn on theleft side of eachline (rela-
tiveto the start and end points). If asymmetric sym-
bols such as this need to be drawn on a particular
sideof eachline, you may need to usethe
Spatial Data Editor to reversethedirec-
tion of individual linesin order to create

- 15 the desired symbol.

TR

page 24

Using CartoScripts

More About Pen Position

Whenyou usetheLineStyleRoll () function, you need
to keep in mind that it movesthe pointer, but not the
pen position. In many scriptsthisfact isnot obvious
because most of the local-reference drawing func-
tionsautomatically movethe pento the origin of the
local coordinate system before drawing. Inthecir-
cle-linescript (page 21), for example, the LineStyle-
DrawCircle() function automatically movesthe pen
to the current pointer position after each LineStyle-
Roll action. One function that does not update the
pen position before drawing is the LineStyleLine-
To() function. Thisfunction draws aline from the
current pen position to a point specified in 3)
thelocal coordinate system. Whenyouwant -

to use thisfunction in a LineStyleRoll loop

to draw aline beginning at the origin of the

local coordinate system, as in the tick line

script on the preceding page, use the state-

ment “LineStyleMoveTo(0,0)” to move the

pen to the current pointer position before
drawing.

The peculiarities of the LineStyleRoll() and

LineStyleLineTo() functions were engi-

neered for apurpose. They makeit possibleto draw
dashed or continuouslines offset from the vector line
element. The script in this exercise shows an ele-
gant example, a line symbol that looks like a
continuoussinecurve. The“curve’ isactually made

STEPS

M reopen the Query Editor
window for line styles for
the conTours object

M choose Open/RVC
Object from the File
menu in the Query Editor
window

M select object
SINEWAVEQRY from the
cArTosmP Project File

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

§

7

PO

up of small straight-line
segments drawn by the
LineStyleLineTo() func-
tion. Eachiteration of the
“while’ loop increments
theanglefor the sinefunc-
tion by one radian,
producing a sinusoidally
varying amplitude for the
LineStyleLineTo() func-
tion. }

Si neWaveQy

angle = 0;
Draw |ine

angle =

Set line color and width
Li neStyl eSet Col or (0, 0, 0);
Li neStyl eSet Li neW dt h(3);
Set sine wave paraneters
space = 4,

while (LineStyl eRoll (space) <> 1) {
angle + 1;
a = sin(angle) * 5;
if (a > 0) then LineStyleLineTo(90, a);
el se LineStyl eLineTo(-90, abs(a));

in radi ans
anplitude

page 25

Using CartoScripts

Drawing Dashed Lines

STEPS

)

o

reopen the Query Editor
window for line styles for
the conTours object
choose Open / RVC
Object from the File
menu in the Query Editor
window

select object BARBQRY
from the carTOSMP
Project File

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

BarbQy
Set line color and width
Li neStyl eSet Col or (170, 85, 0)

Li neStyl eSet Li neW dt h(3)

To draw simple or complex dashed lines, you can
usea“while’ loop to alternate LineStyleRoll() and
LineStyleRollPen() actions. The LineStyleRoll-
Pen() function drawsalinealong aline element for
aspecified distance beginning at the current pointer
position. Thedrawing distanceisset by thevalue of
the single function parameter. For asimple dashed
line with dashes and spaces of equal size, use the
same distancefor both the LineStyleRoll() and Line-
StyleRollPen() functions.

The script in this exercise is a bit more elaborate,
adding atick linewith afilled circleat theendinthe
middle of each dash. In eachiteration of the*while”
loop, the LineStyleRallPen() function drawsthefirst
half of adash, thenthetick lineand circlearedrawn,
and finally the second half of the dash isdrawn.

-~ b ~ ~ [l
Set dash paraneters > }?* T < A 1 H oY
dashSi ze = 20 1 - o
half = 0.5 * dashSize N "3:{'1‘ v 4 @ 1
L2 2z 4 4 f
- 2L “
Sgt circle par amet ers N3 ¥ A+ I
radi us = 3; dofill 1 \&YY a4 o N
Draw | ine A A L
whil e (LineStyl eRol | (dashSize) <> 1) { L A AN o
di st = LineStyl eGet Di stanceTo(3) L A Ay
if (dist > dashSize) { k EY
Li neStyl eRol | Pen(hal f) ¢ X ¥
Li neSt yl eMoveTo(0, 0) ¢ X < A A
Li neStyl eDr opAnchor (0) Ay L o4
Li neStyl eLi neTo(90, hal f) >~ A’y Ly
Li neStyl eDrawGi rcl e(radi us, dofill) 2 7'>. “f-\& “
Li neSt yl eMoveToAnchor (0) g > » Lo ¥

Li neStyl eRol | Pen(hal f) -

el se LineStyl eRol | Pen(di st)

}

M remove the cONTOURS
layer when you have
completed this exercise

X

page 26

Using CartoScripts

Double Dashed Lines

Thescriptinthisexerciseillustrates another dashed
linevariation. It drawseach linewith double dashes
connected by crossing lines. Each pair of dashesis
centered on the line element, which means that the
dashes themselves are offset from the line by adis-
tance specified by the offset variable. Because no
part of the symbol tracesthe line element itself, the
LineStyleLineTo() functionisused to draw both the
dashes and the crossing lines.

DoubDashQy

dashSi ze = 15;

hal f Dash = dashSi ze * 0.5;
double = 2 * dashSi ze;

of fset = dashSize * 0. 2;
doubOr fset = offset * 2;

Set line color and width
Li neStyl eSet Col or (255, 0, 0) ;
Li neStyl eSet Li neW dt h(2);

Draw doubl e dash line and crossing |lines
Li neStyl eMoveTo(90, offset);

Li neStyl eLi neTo(0, dashSi ze);

Li neStyl eMoveTo(-90, doubOffset);

Li neStyl eLi neTo(180, dashSi ze);

Li neStyl eMoveTo(0, hal f Dash);

Li neStyl eLi neTo(90, doubCOffset);

whil e (LineStyleRoll (double) <> 1) {
di st = LineStyl eGet Di stanceTo(3);
if (dist > dashSize) {
Li neStyl eMoveTo(90, offset);
Li neStyl eLi neTo(0, dashSi ze);
Li neStyl eMoveTo(-90, doubOffset);
Li neStyl eLi neTo(180, dashSi ze);
Li neStyl eMoveTo(0, hal f Dash);
Li neStyl eLi neTo(90, doubCOffset);
}
} W >

== 7

STEPS EI

M click on the Add

Vector icon button in the
Group Controls window
and choose Add Vector
Layer

select object sTREAMS
from the carTosmP
Project File

click on the Lines tab on
the Vector Layer
Controls window

select By Script from the
Style option menu and
click [Specify...]

choose Open / RVC
Object from the File
menu in the Query Editor
window

select object
DousDasHQRY from the
carTosmP Project File
click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

=+
5

o
Ql:;:;I;I

Using CartoScripts

Handling Multiple Repeat Intervals

STEPS . Line symbols can include components repeated at
¥ reopen the Query Editor | gjifferent intervals along the line, as illustrated by
window for line styles for . L .
the sTreamss object the dgshes anddi gmonds drawn by th_e scriptinthis
M choose Open/RVC exercise. ThevariablecumL inthescript keegpstrack
Object from the File of the cumulativelength of dashes and spacesdrawn
en in the Query Bditor | gce the last diamond symbol. When the value of
M select object DasHDIQRy c_umL reache§ the spacing Qi stance set for the
from the carToswP diamonds, adiamond symbol is drawn instead of a
- Project File dash, and the value of cumL is reset to 0. The
g:jﬁfo[r%ié'ngr%uzgém diamond symbol is created here using the Line-
in the Vector Layer StyleSideshot() function. Thisfunction allowsyou
Controls window to specify anumber of points by angle and distance
inthelocal coordinate system, and connect them to
form a polyline by setting the value of the dodraw
parameter to 1. This script also records the points
as apolygon so the diamond shape can be filled.
DashDi Qy }
Set line color and width |

Li neStyl eSet Col or (225, 0, 0);
Li neStyl eSet Li neW dt h(2);]
Set dash paraneters

dashSi ze = 12; half = 0.5 * dashSi ze; /

Set di anond paraneters /
spacing = 5 * dashSi ze;

dodraw = 1; dofill = 1; ¥

width = 0.3 * dashSi ze; -®* - — o

cunL = 0; # Cunulative length variable \'l

Draw |ine o~ -
whil e (LineStyl eRol | (dashSize) <> 1) { -

cunL =

cunL + dashSi ze;
if (cunL >= spacing) {

increnent cunul ative length
draw di anond synbol

Li neStyl eRol | (hal f);

Li
Li
Li

Li
Li

cunL = 0; # reset cunulative length to 0
}

el se {
Li neStyl eRol | Pen(dashsSi ze); # draw dash

cu

}

neStyl eMoveTo(0, 0);

neStyl eRecor dPol ygon(1);

neStyl eSi deshot (dodr aw, 0, hal f, 90, wi dt h, 180,
hal f, - 90, wi dt h);

neStyl eDr awPol ygon(dofill);

neStyl eRol | (hal f);

mL = cunL + dashSi ze;

increnent cunulative length

page 28

Using CartoScripts

Dashed Thrust Fault Symbol

STEPS

Thescript inthisquery providesanother example of
symbols using different repeat intervals. It draws
the dashed version of the geol ogic map symbol for a
thrust fault. The triangles are drawn as polygons
using anchor pointsplaced at the corners. The bases
of the triangle symbols are drawn using the Line-
StyleRollPen()) function so that they conform to
curves in the line elements. Note that a negative
distance can be used with the LineStyleRoll () func-
tion to move backward along aline element.

DashThrustQy

dashSi ze = 16; # |l ength of dashes

hal f Dash = dashSize * 0.5;

triangl e spacing and di nensi ons

spaci ng = dashSize * 6;

quart Space = spacing * 0.25;

triWdth = dashSi ze;

hal fTri = triwdth * 0.5;
hei ght = dashSi ze * 0. 6;
Set line color and width

Li neStyl eSet Col or (255, 0, 0) ;

Li neStyl eSet Li neW dt h(2);

Initialize variable to control

cunlL = spaci ng;

Draw dashed fault line and triangles

whil e (LineStyl eRoll (hal fDash) <> 1) {
di st = LineStyl eGet Di stanceTo(3);
cunk = cunL + dashSi ze;

)

o

di stance to end of

reopen the Query Editor
window for line styles for
the sTrREAMS Object
choose Open / RVC
Object from the File
menu in the Query Editor
window

select object
DAsHTHRUSTQRY from the
carTosMP Project File
click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

remove the sTREAMS
layer when you
have completed this
exercise

X

pl acenent of triangles

line

if (dist > quartSpace and cunL >= spacing) { N

Li neStyl eDr opAnchor (1) ;

Li neStyl eRol | (hal fTri);

Li neStyl eMoveTo(0, 0); v
Li neStyl eMoveTo(90, height); \
Li neStyl eDr opAnchor (2);

Li neStyl eRol | (-hal fTri);

Li neStyl eRecor dPol ygon() ;

\

Li neStyl eRol | Pen(tri Wdth); ¢
Li neStyl eLi neToAnchor (2); \

Li neStyl eLi neToAnchor (1) ;
Li neStyl eDr awPol ygon(1) ;
cunL = O;
}

el se {
Li neStyl eRol | Pen(dashsSi ze) ;
cunk = cunL + dashSi ze;

}

page 29

Using CartoScripts

Labeling Contour Lines

STEPS

M click on the Add ﬂ
Vector icon button in the
Group Controls window
and choose Add Vector
Layer

M select object conTours
from the carTOSMP
Project File

M click on the Lines tab on
the Vector Layer
Controls window

M select By Script from the
Style option menu and
click [Specify...]

M choose Open/RVC
Object from the File
menu in the Query Editor
window

M select object ConLABLQRY
from the carToswmp
Project File

M click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

maxDist from

Current LineStyleGet-
line MaxDistance()
position

\

Straight line joining endpoints

5\(\

00v8

You can design a CartoScript to vary the placement
and orientation of line symbol components to
accomodatethelocal direction and shape of theline
elements. In this script that draws and labels con-
tours, the elevation labelsfor the major contoursare
moved if the local portion of the lineistoo highly
curved, and areinverted if necessary to bereadable.
(Only the main processing portion of the script is
shown on the next page).

These conditions are checked using the Line-
StyleGetDirection() and LineStyleGetMaxDis-
tance() functions. The first parameter of both
functionsis avalue that specifies the length of the
portion of the line that you want to examine. The
additional parameters of both functionsarevariables
that are assigned values by the function. The Line-
StyleGetDirection() function findsthe minimum and
maximum direction anglesfor the specified line seg-
ment in the object coordinate reference frame (pos-
itive x-axis = 0 degrees). The LineStyleGet-
MaxDistance() function findsthe maximum perpen-
dicular distance between the specified portion of the
line element and astraight linejoining its endpoints
(seeillustration at left), aswell asthe direction an-
gle of this straight line (used in this script to orient
the contour label). Both functionsreturn avalue of
1if at the end of the line element, or O otherwise.
The script checks the maximum distance value as
. well asthechangeinlinedi-
\ rection over the label length
todetermineif thelocal por-
tion of thelineistoo highly
curved to place the label
there. Thedirectionangle of
thelabel lineisused to iden-
tify label sthat need to bein-
verted.

M remove the conTours X
layer when you have
completed this exercise

5‘30 0

page 30

Using CartoScripts

Labeling Contour Lines (continued)

if (rem<>0) { # draw m nor contours
Li neStyl eSet Li neW dt h(wi dt h);
Li neSt yl eDr awLi ne();
}
el se { # draw and | abel maj or contours
Li neStyl eSet Li neW dt h(w dt hBol d) ;
str$ = sprintf(“%l”,elev); # read elevation to string variable
find length of contour | abel
Li neSt yl eText Next Posi tion(str$, | abel Si ze, 0, 1, next x,
nexty, | ength);

begShift = 5 * |length; # offset from beginning of line
stopLength = begShift; # mn | abel distance fromend of |ine
spLength = 1.5 * | ength; # | abel |ength plus spaces

Li neStyl eRol | Pen(begShi ft); # draw begi nning of contour |ine

whil e ((LineStyl eGet MaxDi st ance(splLengt h, drawAngl e,
maxDist)) <> 1) {
Li neStyl eGetDirection(0.1 * |abel Si ze, m nAngl e, maxAngl e) ;
find change in line direction over |ength of |abel
devAngl e = drawAngl e - m nAngl e;
find distance to end of line and conpare to stoplLength
remLength = LineStyl eGet Di stanceTo(3);
if (remLength < stopLength) break;
check deviation distance and angle of |ine segnent
if ((maxDist < 1.5 * | abel Si ze) and (abs(devAngle) < 15)) {
Li neStyl eRol | (0. 25*I ength); # space before draw ng | abel

Check if label needs to be inverted to be readable
islnverse = 0;
if (abs(drawAngle) > 90) islnverse = 1;
if (islnverse) {
Li neStyl eMoveTo(devAngl e, |ength);
Li neStyl eMoveTo(devAngl e + 90, hal fSize);
Li neStyl eDr awText (str$, | abel Si ze, dr awAngl e+180, 1) ;
}
el se {
Li neStyl eMoveTo(- 90, hal f Si ze) ;
Li neStyl eDr awText (str$, | abel Si ze, drawAngl e, 1) ;

}
LineStyleRoll (1.2 * | ength);
Li neStyl eMoveTo(0, 0);
Li neStyl eSet Li neW dt h(w dt hBol d) ;
Li neStyl eRol | Pen(m nDi st Bet weenLabel s);
}
el se LineStyl eRol |l Pen(l ength); +180
}
Draw renumi nder of |ine
Li neStyl eRol | Pen(reniLength);
}

Invert +90

page 31

Using CartoScripts

Syncline Line Symbol

STEPS E

M click on the Add

A CartoScript can be structured to draw different line

Vector icon button in the
Group Controls window
and choose Add Vector
Layer

select object syNCLINE
from the carTOSMP
Project File

click on the Lines tab on
the Vector Layer
Controls window

select By Script from the
Style option menu and
click [Specify...]

choose Open/RVC
Object from the File
menu in the Query Editor
window

select object
SYNCLINEQRY from the
carTosMP Project File
click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

symbols depending on the attributes attached to the
lineelements. The script in thisexercise draws geo-
logical line symbolsfor theaxial trace of asynclinal
(downward) fold inlayered rocks. If onelimb of the
fold hasrotated beyond avertica orientation, thefold
is overturned, and a special symbol isused. The
overturned condition for vector linesinthisexercise
isindicated by alogical database field.

This script draws each line element as a solid line,
then placesthefold symbol inthemiddle of theline.
The semicircle that forms part of the overturned
syncline symbol isdrawn using the LineStyleDraw-
Arc() function, which drawsan arc about aspecified
center point. The first two function parameters
specify an angle and distance to the intended center
point of the arc, so you have the option of moving
the pen to a new location before drawing the arc.
You also specify a starting angle and sweep angle
for thearc, and have the option of rotating theentire
arc after drawing by assigning a nonzero value for
therotangle parameter.

SynclineQy

Read a | ogical database field (Yes/No) to check if syncline is
overturned. Nunmeric variable is set to 1 if yes, 0 if no
overturned = Syncline. Overturned;

di mensi ons of arrow synbols

arrowSi ze = 30; hal f Si ze = arrowSi ze * 0.5;
headSize = 0.5 * arrowSi ze; sweepAngl e = 45;
stenSize = arrowSi ze - headSi ze * cosd(sweepAngl e);
width = 2; # width of lines

Paraneters for half circle in overturned syncline synbol

angle = 0; shift = halfSize; # angle and distance to arc center
radi us_x = hal f Si ze; # radii of arc

radius_y = hal f Size;

start Angle = -180; swpAngl e = -180;

rot Angle = 0; i sAngl eAbs = 0;

Set line color, width, and draw fold line

Li neStyl eSet Col or (228, 0, 0);
Li neStyl eSet Li neW dt h(wi dt h) ;
Li neStyl eDrawli ne();

page 32

Using CartoScripts

Syncline Line Symbol (continued)

Draw arrow synbols in middle of each line

Li neStyl eSet Posi ti on(0.5); # nove to mddle of line

if (overturned == 1) { # draw overturned syncline synbol
Draw arrows with O line width
Li neStyl eRol | (-hal fSi ze);
Li neStyl eDr opAnchor (1) ;

Li
Li
Li
Li
Li
Li
Li
Li

#
Li
Li
Li
Li
Li

Li
Li

el se {

#
Li
Li
Li
Li
Li
Li
Li
Li
Li

#
Li
Li
Li
Li
Li
}

neStyl eSet Li neW dt h(0) ;

neStyl eMoveTo(-90, arrowSi ze);
neStyl eDr opAnchor (2);

neStyl eDr awAr r ow(90, arrowSi ze,
neStyl eMoveTo(0, arrowSi ze);
neStyl eMoveTo(-90, arrowSi ze);
neStyl eDr opAnchor (3);

neStyl eDrawArrow 90, arrowSi ze, headSi ze, sweepAngle, 1);

headSi ze, sweepAngle, 1);

Draw arrow stens and arc with linewidth = width
neStyl eSet Li neW dt h(wi dt h) ;
neStyl eMoveToAnchor (2) ;
neStyl eLi neTo(90, stenSize);
neStyl eMoveToAnchor (1) ;
neStyl eDrawArc(angl e, shift, radius_x, radius_y,
start Angl e, swpAngl e, isAngl eAbs);
neStyl eMoveToAnchor (3);
neStyl eLi neTo(90, stenSize);

draw upright syncline synbol
Draw arrows with O line width
neStyl eDr opAnchor (1) ;
neStyl eSet Li neW dt h(0) ;
neStyl eMoveTo(90, arrowSi ze);
neStyl eDr opAnchor (2);
neStyl eDrawArrow - 90, arrowSi ze, headSi ze, sweepAngle, 1);
neStyl eMoveToAnchor (1) ;
neStyl eMoveTo(-90, arrowSi ze);
neStyl eDr opAnchor (3);
neStyl eDrawAr row 90, arrowSi ze, headSi ze, sweepAngle, 1);

Redraw arrow stens

neStyl eMoveToAnchor (2) ;

neStyl eSet Li neW dt h(wi dt h) ;

neStyl eLi neTo(-90, stenSize); This script draws the dip arrows

neStyl eMoveToAnchor (3) ; for the overturned syncline

neStyl eLi neTo(90, stenSize); symbol on the right side of a
line element. Line directions

have been set in the vector
object to accomodate this
script design.

page 33

Using CartoScripts

Add Elements to LegendView

STEPS

M make sure that lines are
selectable in the View
window

] E VT‘EWX Syncline
ar
";{.EEJ s:

M select the
GeoToolbox from
the View window

M turn on the Select
tool in the
GeoToolbox
window

M in the View window, left-
click on one of the two
lines drawn with the
upright syncline symbol

M press and hold the right
mouse button and select
Add Active Line to
Legend from the popup
menu

=]

Add Active Line to Legendl

S Y
S 2wl

LY

Vector style samples appear automaticaly in Leg-
endView when you style points, lines, or polygons
using the All Same, By Attibute, or By Theme style
options. But when you style vector el ementsus-
ing ascript, the“ styles’ created by your script do
not automatically appear in LegendView; instead
the current All Same style for the element ap-
pearsin LegendView by default.

You can create L egendView samplesfor vector ele-
ments styled by script by selecting from the View
window a representative element for each drawing
“style” and adding it to LegendView. You must use
the selection toolsin the GeoTool box to performthe
selection (you cannot use the simple Select tool on
the View window).

In this exercise you select two lines from the syn-
clinevector layer, one styled with the normal upright
syncline symbol and the other with the overturned
syncline symbol. When each LegendView sam-
ple is rendered in the window, the script is
executed using the database attributes of the ele-
ment you selected for it.

Y

M when the Legend
Element Label window

appears, enter “Syncline”

in the text field and press
[OK]

=Legend Elenent Label

Label for legend elenent:

Syncline|

0K I Cancell

=Group 1 = Group Yiew 1
Yiew Tool LegendV¥iew GPS Options
@Dl - @ImI&IQI@\I@I@tlﬁ
=V

ncline
Overturned Syncline
yncline

A special database table is created to identify the
elements you have selected for the legend. The
table also stores the label text for each sample.

M repeat the last three
steps for the line drawn
with the overturned
syncline symbol, entering

“Overturned Syncline” for

the label

=Synclive / LineData / LINELEGENDELEH MmE3
Table Ndit Record Field Help
B o ol N 1
I PrinarylLabel
Cl 1[Gancline =
& 2|0verturned Syncline |J
& ¥
o — | -
2 of 2 records shown [

page 34

Using CartoScripts

Script Variables for Legend Samples

STEPS

Notice that the syncline symbols drawn in Legend-
View in the previous exercise overlap each other
because they appear too large for the legend spac-
ing. LegendView assignsarectangular areato each
sample, and the general scaling parametersincluded
in your script for map rendering may not provide a
good fit to that area.

Several script variables let you set up specia pro-
cessing to better scale symbols for legends. When
the Display processrendersasamplein LegendView
using a script, the variable DrawingLegendView is
automatically assigned avalue of 1. (ItsvalueisO
when the script is rendering elements in the view.)
You can therefore set up a conditional loop in the
script that checksthisvalue and executes only when
the script isdrawing asample for LegendView.

When alegend sample is being rendered,
class SampleRect is created automatically

Label:

)

)

open the Vector Layer
Controls window and
click on the Lines tab
select Straight from the
Legend Style menu on
the lower part of the
panel

M reopen the Query Editor

window for line styles

M choose Open/RVC

No Zigzag

Object from the File
menu in the Query Editor
window

select object SynQryLgn
from the carTosmpP
Project File

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

Legend Style: Straight il

Gpeeify, .. I

to allow you to access the coordinates and
size of the samplerectangle. SampleRect
is an instance of the general class Rect,
which includes methods GetHeight() and
GetWidth() that you can useto find either
dimension of the rectangle. The Carto-
Script in this exercise uses the height of
the sample rectangle to scale the syncline

Lobol Shule...

Yiew Tool

The default shape for a line sample in
LegendView is zigzag. Complex line
symbols drawn by CartoScript look
better in LegendView when drawn with
the Straight legend style option.

= Group 1 = Grovp Yiew 1

egendView GPS Options

symbols in LegendView. The relevant

@il A OR8] ISRS

portion of the script is excerpted bel ow. e B sr,{ncune =

Overturned Syncline ‘

—1— Syncline

These variabl es control

the length of the arrows

ArrowLengthMap is the desired arrow length in nm

assum ng vector coordinates are in neters:
if (Draw ngLegendVi ew 1) {

ArrowSi ze = 0.5 * Sanpl eRect . Get Hei ght () ;

}
el se {

ArrowLengt hMap = 4;

ArrowSi ze = ArrowLengt hMap * Scal e / 1000;
}

M close the
current display
group when
you have
completed this
exercise

page 35

Using CartoScripts

CartoScript Samples in Printed Legends

STEPS

M click the Open |
icon button on
the Spatial Data Display
toolbar and choose
Open Layout from the
menu

M select PrinTLAYOUT from
the cemap Project File

M in the Layout -
Controls window, IH
click on the
Legend icon button for
the Symbols legend

M examine the Legend

Layer Controls window,
then click [OK]

Structural Symbols

Contacts

exposed or well-located

approximately located

concealed beneath
Quaternary deposits

Once you have selected legend samples for vector
elementsthat are being rendered by ascript, you can
also create a legend with these symbols in a map
layout for printing. Simply create amulti-object leg-
end, use the Legend Layer Control window to add
the appropriate element type (point, line, or poly-
gon) from the vector object, and the script-styled
legend samplesand their |abel s appear automatical-
ly inthelegend. TheLegend Layer Controlswindow
alows you to adjust the positions of legend entries
andto changethelabel text and styleif desired. The
tutorial booklet Making Map Layouts includes sev-
eral exercisesto guideyou through the creation of a
multi-object legend.

Theprint layout you open inthisexercisein-
cludes amulti-object legend of geologicline
and point symbols rendered by CartoScript.
All of the script objectsused are also includ-
edintheProject File.

Dip-slip Faults
) -
exposed or well-located Slczcillaucitontiols
D Layout |Frane |
- = - = apmeImatEIy located ﬁ?\l"gl.l Use Transparency Effects
.............. concealed oral Symbols 3
Folds LContacts
exposed orwelklocated
Syncline approximatehy locate d
++ goncedled beneath
Quaternary depesit
—ﬁ— Overturned Syncline jire-<fp Fandiis
I— 005 ed o el located
Strike and Dip — == approximately located
. Bedading [g soncealed
27 Folds
4 . Sy ncling
“wd, Overturned bedding
Overturned Syneline
%? Cleavage
Btrike =nd Dip
25 \'} Bedding
—4_ Foliation in pluton mwis |
M Overturned bedding
Trend and Plunge S;? Cleavage
23 . . .
o Mineral lineation g i POt ik
13 Minor fold & ,’ IFrend and Plunoe £
= / =) T
sSamples g
. pl 0K | Cancel Help
B @ Quartz vein {

page 36

Using CartoScripts

Scripting Legend Sample Position

Point and line symbolsshould berenderedinaprinted | STEPS

legend at the same scale as they are on the map. If
you have scaled your symbolsto a map scale, they
will appear at the correct scale automatically in a
multi-object legend. But thereareinstancesinwhich
you might want to have the script adjust the position
of samples both in LegendView and in a multi-ob-
ject legend. The script variable DrawingSampleis
automatically set to 1 whenever the script renders
either type of legend sample, allowing you to set up
instructionsin the script to reposition symbolsinthe
legend sample.

Thescript inthisexerciseisaversion of one shown
in the earlier exercise Orienting Symbols by At-
tribute. 1t drawslabeled arrowsthat in thiscase show
thetrend and plunge of mineral lineations at various
map locations. Inthe map the base of thearrow isat
the outcrop location. The drawing instruc-
tions are modified when a legend sample
isbeing rendered to center thearrow onthe
point and moveit down afew pixelsto bet-
ter align vertically with the legend label.
Therelevant portion of the script isexcerpt-
ed below.

M in the Layout Controls

window, open the Vector
Layer Controls window
for the Lineation vector
layer in Group 1

click on the Points panel
in the Vector Layer
Controls window and
open the Query Editor
window for point styles
note how legend
variables are used in the
script

click [OK] in the Query
Editor window and again
in the Vector Layer
Controls window

-
=] gf s Lineation

23 q q q
w._ Hineral lineation

Trend and Plunge
23\ Mineral lineation

Draw arrow with zero line width, tip of stemat data point

but centered on point if |egend sanple
if (Drawi ngSample == 1) {

Li neStyl eMoveTo(QppTrend, ArrowLength / 2);

Li neStyl eMoveTo(-90, 5) ;

Li neStyl eDr opAnchor (0) ;

Li neStyl eSet Li neW dt h(0);
Li neStyl eDrawArrow(Di rection, ArrowL,ength,
Li neStyl eDr opAnchor (1) ;

Draw arrow stemwi th desired line width
Li neSt yl eMoveToAnchor (0);

Li neStyl eSet Li neW dt h(Li neW dt h) ;

Li neStyl eLi neTo(Directi on, Steniength);

Li neStyl eMoveToAnchor (1) ;

anchor at data point

HeadSi ze, Angle, 1);
anchor at tip of arrow

page 37

Using CartoScripts

CartoScript Function List

Style Control Functions
Li neStyl eSet CapJoi nType setsquare or rounded ends for lines and polyline

segments

Li neSt yl eSet Col or set RGB values (0-255) for line color

Li neSyl eSet Coor dType set coordinate type for input values (object or
millimeters)

Li neSt yl eSet Font set name of font to use for text

Li neStyl eSet Li neW dt h set width of lines to be drawn

Li neSt yl eSet Scal e set scale factor applied to input distances

Li neSt yl eSet Text Col or set RGB values (0-255) for text color

Label Optimization
Li neStyl eAddToOpt i mi zer access built-in label placement optimizer

Functions that reference position within input line elements

Navigation
Li neSt yl eNext Vert ex move pen to next vertex along line element
Li neStyl ePrevVert ex move pen to previous vertex along line
Li neStyl eRol | move pointer a specified distance along line
element
Li neStyl eSet Posi ti on move pen to specified relative position along
line element (0.0 = start, 1.0 = end)
Drawing
Li neStyl eRol | Pen move pen to pointer position and draw line for
specified distance along line element
Information
LineStyl eGet Direction find minimum and maximum direction angles
of line element segment
Li neStyl eGet Di st anceTo find distance from pointer position to next

vertex (1), previous vertex (2), end (3), or start
(4) of line element

Li neStyl eGet Li neCurvat ure find curvature of line element segment

Li neStyl eGet MaxDi st ance find maximum perpendicular distance from
line segment to straight line connecting
segment start and end

Li neStyl eGet Posi ti on find current relative position of pointer along
line element (0.0 = start, 1.0 = end)
Li neStyl el sC osed test if current line element forms a closed

polygon (1) or not (0)

Note: the line segment operated on by certain functions in the last group above
begins at the current pointer position along the line element and extends to a
specified distance from it.

page 38

Using CartoScripts

Li

L

L

Li
Li

Li
Li
Li
Li
Li
Li

L

Li
Li
Li
Li
Li

L

L

L

Li

CartoScript Function List (continued)

Functions that reference the current local coordinate system

Navigation
neSt yl eDr opAnchor

neStyl eMoveTo

neSt yl eMoveToAnchor

Drawing
neStyl eDr awAr ¢

neSt yl eDr awAr r ow

neStyl ebrawCircl e
neSt yl eDr awCone
neSt yl eDr awCube
neStyl eDr awCyl i nder
neStyl eDr awkl | i pse
neSt yl eDr awPol ygon

neSt yl eDr awPol yl i ne

neSt yl eDr awRect angl e
neSt yl eDr awText

neSt yl eDr awText Box

neSt yl eDr awThr eePoi nt Arc
neStyl eLi neTo

neStyl eLi neToAnchor

neSt yl eRecor dPol ygon

neSt yl eSi deshot

neSt yl eText Next Posi ti on

record current pen position as anchor
number for later use

move pen to location specified by direction
and distance from current pen location
move pen to specified anchor location

draw arc

draw arrow to location specified by direction
and distance from current pen location
draw filled or unfilled circle

draw cone

draw cube

draw cylinder

draw filled or unfilled ellipse

draw polygon connecting previously
recorded points

draw polyline connecting previously
recorded points

draw filled or unfilled rectangle

draw text label with specified text string
draw boxed text label

draw arc connecting three points

draw line to location specified by direction
and distance from current pen location
draw line from current pen position to
specified anchor location

start or stop recording polygon vertex
locations

specify sequence of positions by direction
and distance from current pen position and
optionally connect to form polyline
compute length and end position of text
string

Functions that draw or transform entire input line elements

Li
Li
Li
Li

neStyl eDr awli ne draw entire vector or CAD line element
neStyl eRest or eLi ne restore original line coordinates
neStyl eSpline replace line element with splined line
neStyl eThi nLi ne replace line element with thinned line

page 39

Advanced Software for Geospatial Analysis

Microl'mageﬁ, Inc. publishes acomplete line of brofessional software for advanced géospaﬁa])
datavisualization, analysis, and publishing. Contact usor visit our web site for detailed prod-
uct information.

TNTmips TNTmipsisaprofessional system for fully integrated GIS, image analysis, CAD,
TIN, desktop cartography, and-geospatial database management.

TNTedit TNTedit provides interactive toolsto create, georeference, and edit vector, "
image, CAD, TIN, and relational database project materialsin awide variety of formats.

NHHT—TTONWNOHT>O

TNTview TNTview has the same powerful display features as TNTmips andis perfect for
those who do not need the technical processing and preparation features of TNTmips:

TNTatlas TNTatlaslets you publish and distribute your spatial project materials on CD-
ROM at low cost. TNTatlas CDs can be used on any popular computing platform.

TNTserver TNTserver letsyou publish TNTatlases on the Internet or on your intranet.
Navigate through geodata atlases with your web browser and the TNTclient Java applet.

TNTIlite TNTliteisafreeversion of TNTmips for students and professional s with.small
projects. You can download TNTlite from Microlmages web site, or you can order
TNTIite on CD-ROM.

I ndex
ANCNOIS....eeeee e 5 point symbols
CONEOUIS.....coririiiieiisiiiscsiss s 20,30-31
COOrdiNate tYPE.....coveveuerereeererieeereeieerenas 10
0ge0logiC MaPS......ccccueeeerennns 3,14-15,29-31,36
[ADEIS. ..o 39
for contour lines......... ..30-31
manual positioning...... .13
optimizing placement.. ..16-19
legends............coeeeneee. 34-37
lINES...coieeiirieiireeiceene 3,20-33 polygon
coordinate Systems..........ceeeeeererererenenas 24 polyline
dashed........coooeviiniceee 26 queries
marking vertices. ...22 gtrike/ dip symbol...
NAVIQALING.....cveeeierieieeree e 21 syncline......ccccceenee
POSItION ON.....eveieireene 24-25 SYNEAX..uiiiee e
K regularly spaced symboals.................. 23

Microlmages, Inc.

I 11th Floor - Sharp Tower
206 South 13th Street
Lincoln, Nebraska-68508-2010 USA

¥
vi
ra

N
Bt

Voice: (402) 477-9554 emailinfo@microimages.com _
FAX: (402) 477-9559 internet: Www!mi eroimages.com,

	Before Getting Started
	Welcome to Using CartoScripts
	Point Symbols
	Draw Simple Point Symbols
	Using Anchors
	Using Built-In Geometric Shapes
	Recording and Drawing Polygons
	Using 3D Shapes
	Text Labels from Database Fields
	Setting Coordinate Type Options
	3D Cylinder Bar Graph
	Orienting Symbols by Attribute
	Calculating Label Positions
	Drawing Strike and Dip Symbols
	Strike and Dip Script (continued)

	Label Optimization
	Optimization with Ranked Deletion
	Full Label Optimization
	Full Optimization Script

	Line Symbols
	Contour Line Width by Script
	Navigating Lines
	Marking Line Vertices
	Drawing Regularly Spaced Symbols
	Positions and Coordinate Systems
	More About Pen Position
	Drawing Dashed Lines
	Double Dashed Lines
	Handling Multiple Repeat Intervals
	Dashed Thrust Fault Symbol
	Labeling Contour Lines
	Labeling Contour Lines (continued)
	Syncline Line Symbol
	Syncline Line Symbol (continued)

	Legends
	Add Elements to LegendView
	Script Variables for Legend Samples
	CartoScript Samples in Printed Legends
	Scripting Legend Sample Position

	CartoScript Function List
	CartoScript Function List (continued)

	Index and product information

